C100]

Sardar Patel University

1

M.Sc. (Mathematics) (Sem-IV); Examination 2018; PS04CMTH02: Mathematical Methods II;

11-04-2018; Wednesday; Time-2.00 pm to 5.00 pm; Maximum Marks 70 Note: Notations and terminologies are standard.

Q.1 Choose correct option from given four choices.

[08]

(i) Which is the third form of the Euler's Equation?

 $\begin{array}{ll} \text{(a)} \ \frac{\partial f}{\partial y} - y' \frac{\partial^2 f}{\partial y \partial y'} - y'' \frac{\partial^2 f}{\partial y'^2} = 0 \\ \text{(b)} \ \frac{\partial f}{\partial y} - \frac{\partial^2 f}{\partial x \partial y'} - y' \frac{\partial^2 f}{\partial y \partial y'} - y'' \frac{\partial^2 f}{\partial y'^2} = 0 \end{array} \\ \begin{array}{ll} \text{(c)} \ \frac{\partial f}{\partial y} - \frac{\partial^2 f}{\partial x \partial y'} - y'' \frac{\partial^2 f}{\partial y'^2} = 0 \\ \text{(d)} \ \text{none} \end{array}$

(ii) The extremum of $I[y(x)] = \int_0^1 \sqrt{1+y'^2} dx$ passing through the points (0,2) and (2,-2) is

(a) y(x) = 2x + 2 (b) y(x) = 2x - 2 (c) y(x) = -2x + 2 (d) -2x-2

(iii) The Laplace transform $L[\sin(2x)] =$

(a) $\frac{1}{s^2+1}$

(b) $\frac{1}{s^2+2}$

(c) $\frac{2}{s^2+2}$ (d) $\frac{2}{s^2+4}$

(iv) Which of the following is a separable kernel?

(c) $K(x,t) = \sin(xt)$ (d) none

(a) $K(x,t) = \log(x^t)$ (b) $K(x,t) = x^t$

(v) For how many λ 's, the integral equation $y(x) = \lambda \int_0^1 e^{x-t}y(t)dt$ has non-trivial solution?

(a) zero

(b) one

(c) two

(d) three

(vi) For how many λ 's, the integral equation $y(x) = x + \lambda \int_0^1 \sin(x-t)y(t)dt$ has solution?

(a) finitely many

(c) uncountably many

(b) countably many

(d) none

(vii) Which of the following is a Sturm-Liouville equation?

(a) $[r(x)y]' + [\lambda q(x) + p(x)]y = 0$ (b) $[r(x)y]' + [\lambda q(x) + p(x)]y' = 0$

(c) $[r(x)y'] + [\lambda q(x) + p(x)]y = 0$ (d) $[r(x)y']' + [\lambda q(x) + p(x)]y = 0$

(viii) Which of the following is Bessel's differential equation?

(c) $y'' + y' + (x^2 - 1)y = 0$ (d) $x^2y'' + xy' + y = 0$

(a) $x^2y'' + xy' + (x^2 - 1)y = 0$ (b) $x^2y'' + (x^2 - 1)y = 0$

Q.2 Attempt any seven

[14]

(i) Find the extremum of $I[y(x)] = \int_a^b (1+x^2y')y'dx$.

(ii) Prove that the extremum of $I[y(x)] = \int_a^b f(y')dx$ is a straight line.

(iii) State the equations of cycloids.

(iv) State the Leibnitz's Rule for the continuously differentiable functions $\varphi(x)$ and $\psi(x)$.

(v) convert $y(x) = 1 - \int_0^x ty(t)dt$ into a differential equation. (vi) State the Fredholm's Alternative Theorem for a compact operator F.

(vii) Prove that $L^{\infty}[0,1] \subset L^{1}[0,1]$.

(viii) State the Hermite differential equation and convert it to the Sturm-Liouville equation.

(ix) State the Laguerre differential equation and convert it to the Sturm-Liouville equation.

(Continue on Page-2)

(a) Prove that if the functional $I[y(x)] = \int_{x_1}^{x_2} f(x,y,y') dx$ has the extremum value, then the integrand f satisfies the Euler's equation $\frac{\partial f}{\partial y} - \frac{d}{dx}(\frac{\partial f}{\partial y'}) = 0$.

[6]

(b) Find the extremal of functional $\int_{-a}^{a} (\lambda y + \frac{1}{2}\mu y''^2) dx$ which satisfies the boundary conditions y(-a) = 0, y'(-a) = 0, y(a) = 0, y'(a) = 0.

(b) Find geodesics on the sphere of radius a.

[6]

[6]

[6]

(a) Prove that

 $\int_{a}^{x} \int_{a}^{x_{n}} \cdots \int_{a}^{x_{2}} f(x_{1}) dx_{1} \cdots dx_{n} = \frac{1}{(n-1)!} \int_{a}^{x} (x-t)^{n-1} f(t) dt.$

(b) Convert the differential equation y'' + xy' + y = 0; y(0) = 1, y(1) = 0 into a corresponding integral equation.

[6]

(b) Solve the integral equation $y(x) = x^2 + \int_0^x \sinh(x-t)y(t)dt$

[6]

(a) Let $1 , <math>1 \le q < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $X = L^p([a, b])$, $Y = L^q([a, b])$, and the kernel $K(\cdot, \cdot) \in L^q([a, b] \times [a, b])$ Define $F: X \to Y$ as

 $F(x)(s) = \int_{a}^{b} K(s,t)x(t)dm(t) \quad (x \in X; s \in [a,b]).$

Prove that $F \in CL(X,Y)$.

[6] [6]

(b) Find eigenvalues and eigenfunctions of the integral equation $y(x) = \lambda \int_0^1 (2xt - 4x^2)y(t)dt$.

(b) Solve the integral equation $y(x) = x + \lambda \int_0^1 (1 + x + t)y(t)dt$

[6]

Q.6

(a) Find eigenvalues and corresponding eigenfunctions of the differential equation $y'' + \lambda y = 0$ on the interval [0,1] with the boundary conditions y'(0) = 0 and y'(1) = 0. [6]

[6]

[6]

(b) Convert $xy'' + (1+2\lambda)y' + xy = 0$ into Bessel differential equation by substitute $x^{\lambda}y = z$, where $\lambda \in \mathbb{R}$.

(b) Convert $x^3y'' + (5x^2 - x^3)y' + 4xy = 0$ with substitute $z = x^2y$ into Laguerre differential equation.

 $ext{THE END}$