[117/A-44]

Sardar Patel University

Mathematics

M.Sc. Semester IV Monday, 10 April 2017

2.00 p.m. to 5.00 p.m.

PS04CMTH01 - Complex Analysis II

	•		164 j	Maximum 1	Marks: 70	
	Fill in the blanks. Which of the followi	ng is not an open m	ap?			[8]
	(a) $\sin z$	(b) e^z	(c) \overline{z}	(d) $e^{ z }$	r (j	
(2)	Let $\gamma(t) = 2e^{it}$, $0 \le i$	$t \leq 4\pi$. Then $\frac{1}{2\pi}$	$\frac{dz}{z-1} =$			
	(a) 2	(b) 3	$(c) \frac{2}{3}$	(d) $\frac{3}{5}$	100 MA 100 Maria	
(3)	Let $N \in \mathbb{N}$, and let $\bar{\gamma}$				z dz is	
	(a) N	(b) 2N	(c) $2N + 1$	(d) $2N + 2$		
(4)	Which of the following	ng is not a convex fu			e en en est	•
	(a) \sqrt{x}	(b) x	(c) x^2	(d) x^{3}		
(5)	Let H+ and H_ be the following are not	open right half plan conformally equival	e and open left ha	• •	Which of	N.
	(a) D and C	(b) D and H ₊	(c) D and H_	(d) H ₊ and I	<u>Ho</u> tacials	
(6)	Let $f(z) = \frac{1-\cos z}{z^2}$. T	Then 0 is $\underline{\hspace{1cm}}$ of f .	g state down		Parks 1	
	(a) a removable sing(b) a pole of order 1	gularity	(c) a pole of o (d) an essentia			
(7)	The value of $\prod_{n=2}^{\infty} (1$	$-\frac{1}{n^2}$) is		447	Arrivation of the Control of the Con	
	(a) 0	(b) $\frac{1}{2}$	(c) 1	(d) 2	•	
(8)	Suppose that f is a positive be the sequence of zero.	nonconstant entire for f which of the f is a second constant.	unction and it has the following is tru	infinitely many zerose?	s. Let (a_n)	
	(a) $\lim_{n} a_n = 0$ (b) $\lim_{n} a_n = 1$		(c) $\lim_{n} a_n $ m (d) none of the			
Q.2	Attempt any Seven.	e ie i	+ 4 E	. *		[14]
(a)	If $n \in \mathbb{N}$, then evalua	te $\int_{\gamma} (\frac{z}{z-1})^n dz$, where	$e \gamma(t) \doteq 1 + e^{it}, 0$	$\leq t \leq 2\pi$.		[]
(b)	Define a rectifiable con $\{\gamma\}$, then define \int	wrve in $\mathbb{C}.$ If $\gamma:[a,b]_{\gamma}f.$	$] o\mathbb{C}$ is a rectifia	ble curve and if f is	continuous	
(c)	Let G be an open co $f = 0$ or $g = 0$.		$G o \mathbb{C}$ are analy	tic and $fg = 0$, then	show that	
(d)	If $f:[a,b]\to\mathbb{R}$ is con	ovex, then prove tha	$t \frac{f(t)-f(s)}{t-s} \leq \frac{f(u)-\frac{1}{2}}{2t-s}$	$\frac{f(t)}{s}$ for all $a \le s < t < t$	$< u \le b$.	
(e)	State Hadamard's Tl	neorem.		,	-	
(1)	Show that $H(G)$ is a	closed subset of $C(0)$	$G,\mathbb{C}).$			
(g) (h)	Let $\mathscr{F} \subset C(G,\Omega)$. If Let (z_n) be a sequen	the closure of ${\mathscr S}$ is a	compact, then sho	w that \mathscr{F} is normal.	the gories	
	$\sum_{n} z_n$ converges absorbing that every mer	olutely, then show th	$tat \sum_{n} \log(1+z_n)$	converges absolutely	the series	
	-		1			

- Q.3
- (a) Let γ be a closed rectifiable curve in \mathbb{C} , and let $G = \mathbb{C} \{\gamma\}$. Let $f : G \to \mathbb{Z}$ be $f(a) = n(\gamma; a)$. [6] Show that f is constant on each component of G. Also, show that f(a) = 0 for all a belonging to the unbounded component of G.
- (b) Suppose that γ is a rectifiable curve and φ is a continuous function on $\{\gamma\}$. For each $m \in \mathbb{N}$, [6] let $F_m(z) = \int_{\gamma} \varphi(w)(z-w)^{-m}dw$, $z \notin \{\gamma\}$. Show that each F_m is analytic in $\mathbb{C} \{\gamma\}$ and that $F'_m(z) = mF_{m+1}(z)$ for every $z \in \mathbb{C} \{\gamma\}$.
- (b) If G be a region and if $f: G \to \mathbb{C}$ is a continuous function such that $\int_T f(z)dz = 0$ for every triangular path T in G, then show that f is analytic in G. State Cauchy's Theorem in First Version.
- Q.4
- (c) Let G be an open connected subset of \mathbb{C} . Suppose that $f: G \to \mathbb{C}$ is analytic and f is not identically zero. If $a \in G$ and f(a) = 0, then show that there is $n \in \mathbb{N}$ and an analytic function $g: G \to \mathbb{C}$ with $g(a) \neq 0$ such that $f(z) = (z-a)^n g(z)$ for all $z \in G$.
- (d) State Rouche's Theorem. Deduce Fundamental Theorem of Algebra from it. Also, find the number of roots of $e^z az^{2017} = 0$ inside |z| = 1, where $a \in \mathbb{C}$ and |a| > e.
- (d) Suppose that f is analytic on the open unit disc $\mathbb D$ and $|f(z)| \le 1$ for all $z \in \mathbb D$. If $a \in \mathbb D$ and $|f(a)| = \alpha$, then show $|f'(a)| \le \frac{1-|\alpha|^2}{1-|a|^2}$. Also, show that if $|f'(a)| = \frac{1-|\alpha|^2}{1-|a|^2}$, then there is $c \in \mathbb C$ with |c| = 1 such that $f(z) = \varphi_{-\alpha}(c\varphi_a(z))$ for all $z \in \mathbb D$. State the result you use.
- (e) Let G be an open subset of \mathbb{C} . Show that there is an increasing sequence (K_n) of compact subsets of G such that $\bigcup_n K_n = G$ and $K_n \subset \operatorname{int}(K_{n+1})$ for all n. Also show that every compact subset of G is contained in some K_n .
- (f) Suppose that G is a region and a sequence (f_n) in H(G) converges to f. If $f \neq 0$, $\overline{B(a;R)} \subset G$ and $f(z) \neq 0$ for |z-a| = R, then show that there is an integer N such that f and f_n have the same number of zeros in B(a;R) for all $n \geq N$. Hence prove that if (f_n) is a sequence in H(G) converging to f in H(G) and each f_n never vanishes on G, then either f = 0 or f never vanishes.
- (f) When is $a \in \mathbb{C}$ called an *essential singularity* of a function f? Prove that an isolated singularity a of f is an essential singularity if and only if for any $\delta > 0$ the set $\{f(z) : 0 < |z a| < \delta\}$ is dense in \mathbb{C} .
- (g) State Weierstrass Factorization Theorem. Hence find a canonical factorization of $\sin \pi z$. [6]
- (h) Let f be analytic function on a region containing $\overline{B(0;r)}$. Suppose that a_1, a_2, \ldots, a_n are the zeros of f in B(0;r) repeated according to their multiplicities. If $f(0) \neq 0$, then show that

$$\log|f(0)| = -\sum_{k=1}^{n} \log\left(\frac{r}{|a_k|}\right) + \frac{1}{2\pi} \int_0^{2\pi} \log|f(re^{i\theta})| d\theta.$$

- (h) Let f be analytic on |z| < R. If $a = re^{i\theta}$ and |a| < R, then show that
 - $rac{1}{2\pi}\int_0^{2\pi}|f(re^{i heta})|^2d heta=\sum_{n=0}^\infty\left|rac{f^{(n)}(0)}{n!}
 ight|^2r^{2n}.$ Habbabbabba

Maximum marks: 35

Sardar Patel University

M. Sc. (Fourth Semester) Examination Saturday, April 22, 2017 Course No. PS04ECMTH28: C Programming and Mathematical Algorithms II

	Time	e: 0.	2.00 p.m. to	04.00 p.i	n.			Mo	aximu	m marks:	35
			gures to the right								
1.	i) ii) iii)	float r (a) r Which (b) (c) (d) Which (a) (c)	of the following. One can call a fur One can define ar One cannot call a One can call a fur h of the following float g(float &x) float g(float x+y)	on. Which of (b) s=r; is true? action within nother function function without notion without is valid first	the follow (in its definition within thin anothout its defi- line of a to	tion. the fuer function function d)	s valid? &r = s; nection manction define / prototypon? float g(float g(float g(float))	nition. pe. at *x) at x * y)		s = &r	[5]
	iv)		ose <i>double *x, y</i> ; i	s a deciarati						2	
	v)	$(a)^{-1}$ int x		(b) 7251 $\{x = x + a\}$ gram?	void mai	c) n(){f(7260 2); 			e of these ent of x after	
•		(a)	4	(b) 7	(c)	11	(d)	2		[6]
2.	a) b)	What In the void void	y THREE of the form is a static variable of graphics mode, we linerel (int dx, int lineto (int x, int y) this a function prote	e? How does vrite the effe dy); ;	ct of follo	wing	functions:	earry val	ue?		LJ
	c) d)	What	t is a data file? Wr	ite types of o	lata files.						
3.	a)	(i)	Explain the funct	ion <i>initgrapi</i>	h.						
	b)	(ii) (i) (ii)	Explain the steps Which operations Explain with illus	one can per	rform on p	ointe	rs? Explai	n with e nal varia	xamples. bles and	automatic	[2] [2]
		()	variables								ГЭT
		(iii)	float h, *j; int a (1) $b = j$;	, *b; are dec (2) b =	clarations. &h		(3) &a =	b;	(4) h	; is invanu. = j;	[2]
	b)	(i)	If char k[10][5] following:	; is declare	d in a p	OR rogra	m, write	the mea	aning of	each of the	[3]
		(ii)	**k, *k+1, *(*k+1) Find the values of segments (1) int i = 5, j =	of i, j and k if 6 , $k = 7$,*pi	after the e	xecut (2)	* $(k + 2)$ ion of each int $k = 5$, pi=&i; p	h of the $i = 3, j$			[3]
				= ++k+12;			$pi = x_i, p_i$ $*pi = *p_i$ $i += *p_i$	+ 9; k =	= ++*pi = *ni + i	+*pj/3;	
							J · · P.	, , , , ,	Pı ' J,	P. T. O.	

•	a	(i) (ii)	Tanoni to interchally the content of two	[2]
		(iii)	Discuss select sorting.	[2]
	b)	40.	Write a C-program to solve $y' = xe^{-y}$, in the interval [0, 2) by Runge-Kutta method of order 2 given that $y(0) = 0.3$.	[2]
		(ii)	Write a C-program to draw x-axis and y-axis and the graph of $y = e^x$, by considering center of the screen as the origin.	
	•	(iii)	Define a function which finds n! and using it, define a function $C(n, r)$, where $C(n, r) = \frac{n!}{(n-r)! r!}$ for a C-program.	[2]
	h)	<i>(</i> 3)	OR OR	
	b)	(i)	Write a C-program to draw x-axis and y-axis and the circle of radius r having centre origin by using polar coordinates.	[2]
		(ii)	Write a C- program to find $\int_0^1 e^x \sqrt{x} dx$ by using rectangle rule.	[2]
		(iii)	Define the functions $h(x) = \sin(x)e^x$ and	[2]
			$f(x,y) = \begin{cases} h(x+y)h(x*y) & \text{if } x \le y \\ h(x*y)/(h(x+y)) & \text{if } x > y \end{cases}$	(- j
			$\frac{h(x^*y)}{h(x+y)} \text{if } x > y$	

SEAT No.

No of printed pages: 2

[80/A-44]

Sardar Patel University

Mathematics

M.Sc. Semester IV Tuesday, 18 April 2017

2.00 p.m. to 5.00 p.m.

	PS04EM	I HUI - Problems and I	Exercises in Mathemat	tics III	
				Maximum Marks: 70	
		ption for each of the fo	· ,		[8]
(1)	Let f be continuous	on $[0,1]$. The value of	$\lim_{n\to\infty} \int_0^1 f(x) \cos(2nx)$	dx/dx is	
	(a) 0	(b) 1	(c) $\int_0^1 f(x)dx$	(d) $2\int_0^1 f(x)dx$	
(2)	Let f be the Cantor	function on $[0,1]$. The	value of $\int_0^1 f'(x)dx$ is		
	(a) 0 ·	(b) $\frac{1}{2}$	(c) 1	(d) 2	
(3)	The subspace topolog on \mathbb{R} .	gy on $\{(x,x):x\in\mathbb{R}\}$	$\subset \mathbb{R}_{\ell} imes \mathbb{R}_{\ell}$ is homeom	orphic to topology	
	(a) upper limit	(b) standard	(c) discrete	(d) indiscrete	
(4)	Let $H = \{A \in M_n(\mathbb{R})\}$	$: \operatorname{tr}(A) = 0$. Then H	is		
	(a) connected	(b) compact	(c) dense in $M_n(\mathbb{R})$	(d) open in $M_n(\mathbb{R})$	
(5)	The Galois group $G($	$\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$ is isome	orphic to		
	(a) \mathbb{Z}_4	(b) \mathbb{Z}_2	(c) Klein group	(d) none of these	
(6)	The number of onto l	nomomorphisms from a	a field to itself which a	are not injective is	
	(a) 0	(b) 1	(c) infinitely many	(d) none of these	
(7)	Let p be a nonconsta	nt polynomial, and let	$f(z) = \frac{1}{p(z)}$. Then ∞	is $\underline{\hspace{1cm}}$ of f .	
	(a) a removable sing(b) a simple pole		(c) a double pole (d) an essential singularity		
(8)	Let f be an entire fundamental fundamen	nction vanishing on \mathbb{Z}	$\{0\}$. Then the value	of $f(0)$ is	
	(a) 0	(b) 1	(c) π	(d) none of these	
(a) (b) (c) (d) (e)	Show that every poly Find the total variati Compute the residue Show that $z^7 - 4z^3 +$	not uniformly continuous nomial is a Lipschitz fon of $x^7 + x^2 - 2$ over of $f(z) = \frac{1}{1-e^z}$ at 0. $z - 1 = 0$ has exactly er of 3 dimensional subsets.	unction on $[0, 10]$. [1, 2]. three roots in $ z = 1$.		[14

(f) Determine the number of 3 dimensional subspaces of Z₃.
(g) If p and q are distinct primes, then show that Q(√p, √q) = Q(√p + √q).
(h) Let {A_α} be a collection of path connected subsets of a topological space X. If ⋂_α A_α ≠ ∅, then show that ⋃_α A_α is path connected.
(i) Show that a leastly approach.

(i) Show that a locally compact space need not be compact.

Q.3

- (a) Let $f, g: [0,1] \to \mathbb{R}$ be $f(x) = x^3 \sin(\frac{1}{x})$ and $g(x) = x \sin(\frac{1}{x^3})$ if $x \neq 0$ and f(0) = g(0) = 0. [6] Show that f is of bounded variation but g is not.
- (b) Show that there exist C^1 functions u(x,y), v(x,y) and w(x,y) and r > 0 such that $u^5 + (6) xv^2 y + w = 0$, $v^5 + yu^2 x + w = 0$, $w^4 + y^5 x^4 1 = 0$ for all $(x,y) \in B((1,1);r)$ and u(1,1) = v(1,1) = -w(1,1) = 1.

OR

(b) Find the volume of the largest parallelepiped contained in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, [6] where a, b, c > 0.

Q.4

- (c) Let $f: \mathbb{D} \to \mathbb{C}$ be analytic and $|f(z)| \le 1$ for all $z \in \mathbb{D}$. Let $a \in \mathbb{D}$ and $f(a) = \alpha$. Show that $|f'(a)| \le \frac{1-|\alpha|^2}{1-|a|^2}$. Deduce that there is no analytic function $f: \mathbb{D} \to \mathbb{D}$ satisfying $f(\frac{1}{2}) = \frac{3}{4}$ and $f'(\frac{1}{2}) = \frac{2}{3}$. State the results you use.
- (d) Let $\mathbb{H}_+ = \{z \in \mathbb{C} : \text{Im } z > 0\}$. Show that the map $\varphi(z) = \frac{z-i}{z+i}$ maps \mathbb{H}_+ onto the unit disc [6] \mathbb{D} . Deduce that if f is an entire function and the range of f is contained in \mathbb{H}_+ , then f is constant.

OR

(e) Let f be a nonzero entire function. For r > 0, let $g(r) = \sup\{|f(z)| : |z| = r\}$. Show that [6] g is a strictly increasing function. State the result you use. Is the stated result true if the domain is unbounded? Why?

Q.5

- (f) Let K be an extension of a field F. Define G(K/F). If H is a subgroup of G(K/F), then [6] define the fixed field K_H . Let $K = \mathbb{Q}(2^{\frac{1}{3}}, \omega)$ and $F = \mathbb{Q}$, where $\omega^3 = 1$ and $\omega \neq 1$. Let $H = \{I, \sigma_1, \sigma_2\}$, where $\sigma_1(2^{\frac{1}{3}}) = 2^{\frac{1}{3}}\omega$, $\sigma_1(\omega) = \omega$, $\sigma_2(2^{\frac{1}{3}}) = 2^{\frac{1}{3}}\omega^2$ and $\sigma_2(\omega) = \omega$. Compute the fixed field K_H of H.
- (f) Let K be an extension of a field F, and let $a, b \in K$ be algebraic over F of degree m and n [6] respectively. If (m, n) = 1, then show that [F(a, b) : F] = mn. State the results you use.

OR

(g) (新) Show that the number of reducible polynomial over \mathbb{Z}_p of the form $x^2 + ax + b$ is $\frac{p(p+1)}{2}$. [3] (朝) Show that there is no vector space having 40 elements.

Q.6

- (h) Define linear continuum. Show that $[0,1] \times [0,1]$ with the dictionary order is a linear [6] continuum.
- (i) Define second countable and separable topological spaces. Show that a metric space is [6] second countable if and only if it is separable.

OR

(h) Define a first countable topological space. Give an example of a topological space which is first countable but not second countable. Let X be a first countable topological space, $\emptyset \neq A \subset X$ and $x \in X$. Show that x is in the closure of A if and only if there is a sequence in A converging to x.

իննկիննի

[100/A-40]

Sardar Patel University

M.Sc.(Mathematics)(Sem-IV); Examination 2017;

PS04EMTH02: Operator Theory;

15-04-2017; Saturday; Time-2.00 pm to 5.00 pm; Maximum Marks 70

Note: Notations and Terminologies are standard. H is a Hilbert space.

Q.1 Choose correct option from given four choices.

[80]

- (i) Let $x, y \in H$ such that $x \perp y$. Then
 - (a) ||x|| = ||x + y||
- (b) $||x|| \le ||x+y||$ (c) $||x|| \ge ||x+y||$
- (d) $||y|| \ge ||x+y||$

- (ii) Let $E \subset H$ be a non-empty set. Then

 - (a) $H = E \oplus E^{\perp}$ (b) $E \cap E^{\perp} = \{0\}$
- (c) E^{\perp} is open
- (d) $E = E^{\perp \perp}$
- (iii) Let $f:(\Omega,\mathcal{M})\to\mathbb{C}$ be a bounded, measurable function. Let $\|f\|_{\infty}$ be the essential supremum norm and $||f||_{\Omega}$ be the usual supremum norm of f. Then
 - (a) $||f||_{\infty} = ||f||_{\Omega}$
- (b) $||f||_{\infty} \le ||f||_{\Omega}$
- (c) $||f||_{\infty} \ge ||f||_{\Omega}$
- (d) none
- (iv) Let $E:(\Omega,\mathcal{M})\longrightarrow B(H)$ be a resolution of identity and $\omega_1,\omega_2\in\mathcal{M}$. Then
 - (a) $E(\omega_1 \cup \omega_2) = E(\omega_1) + E(\omega_2)$ (b) $E(\omega_1 \setminus \omega_2) = E(\omega_1) E(\omega_2)$
- (c) $E(\omega_1 \cap \omega_2) = E(\omega_1)E(\omega_2)$
- (d) $E(\omega_1 \setminus \omega_2) = E(\omega_1) + E(\omega_2)$
- (v) Let $T \in \mathcal{B}(H)$ be a normal operator. Then
 - (a) T has a polar decomposition
- (c) T has a unique polar decomposition
- (b) T has a positive square root
- (d) none
- (vi) Let $T \in B(H)$ be compact and normal, and let $f \in C(\sigma(T))$. Then f(T) is
 - (a) compact
- (b) normal
- (c) self-adjoint
- (d) positive

- (vii) Let $T \in B_1(H)$. Then
 - (a) $||T||_1 = ||T||_2$
- (b) $||T||_1 \le ||T||_2$
- (c) $||T||_1 \ge ||T||_2$
- (d) none

- (viii) Let $S \in B_1(H)$ and $T \in B_2(H)$. Then
 - (a) $ST \notin B_1(H)$

- (b) $ST \notin B_2(H)$ (c) $S + T \in B_1(H)$ (d) $S + T \in B_2(H)$

[14]

- Q.2 Attempt any seven.
- (i) Let $E \subset H$ be nonempty, closed, convex. Prove that E has an element of minimum norm.
- (ii) Let $E:(\Omega,\mathcal{M})\longrightarrow B(H)$ be a R.O.I., $\omega\in\mathcal{M}$, and $x\in H$. Prove that $E_{x,x}(\omega)=\|E(\omega)x\|^2$.
- (iii) Let $E:(\Omega,\mathcal{M})\longrightarrow B(H)$ be a R.O.I., $\omega,\omega'\in\mathcal{M}$ such that $\omega\subset\omega'$ and $E(\omega')=0$. Then prove that $E(\omega) = 0$.
- (iv) Let $T \in B(H)$ normal. Then prove that ever isolated point of $\sigma(T)$ is an eigenvalue.
- (v) Let $T \in B(H)$ be self-adjoint such that $\sigma(T) \subset [0, \infty)$. Prove that T is a positive operator.
- (vi) If $T \in B(H)$ is invertible, then prove that T has a polar decomposition.
- (vii) Define trace-class operator and Hilbert-Schmidt operator.
- (viii) Let $S, T \in B_2(H)$. Prove that $||ST||_2 \le ||S||_2 ||T||_2$.
- (ix) Prove that $4\langle x, y \rangle = \|x + y\|^2 \|x y\|^2 i\|ix + y\|^2 + i\|ix y\|^2$ $(x, y \in H)$.

(Continue on Page-2)

<u> </u>		
Q.3 (a)	Let $x, y \in H$. Then prove the following: (i) $ \langle x, y \rangle \leq x y $ and $ x + y \leq x + y $; (ii) $x \perp y$ iff $ y \leq \lambda x + y $ ($\lambda \in \mathbb{C}$).	[6]
(b)	Let $T \in B(H)$. Then prove the following: (i) $N(T^*) = R(T)^{\perp}$ and $N(T) = R(T^*)^{\perp}$; (ii) T is normal iff $ Tx = T^*x $ $(x \in H)$.	[6]
	OR	
(b)	Let $M, N, T \in B(H)$, M and N be normal, and $MT = TN$. Prove that $M^*T = TN^*$.	[6]
Q.4		
(a)	Let $T \in B(H)$ be normal. Then prove that there exists a unique resolution of identity $E: \mathcal{B}(\sigma(T)) \longrightarrow \mathcal{B}(H)$ such that $T = \int_{\sigma(T)} \lambda dE(\lambda)$.	[6]
(b)	Let A be a unital, closed, normal subalgebra of $B(H)$. In standard notations, prove that	[0]
	there exists a R.O.I. E on $\mathcal{B}(\Delta)$ such that $T = \int_{\Delta} \widehat{T} dE \ (T \in A)$.	[6]
	OR	[0]
(b)	Let $T \in B(H)$ a normal operator. Then prove the following: (i) T is self-adjoint iff $\sigma(T) \subset \mathbb{R}$; (ii) T is unitary iff $\sigma(T) \subset \mathbb{T}$	[6]
Q.5		
` .	Let $T \in B(H)$ be a normal operator and E be its spectral decomposition. Let $f \in C(\sigma(T))$ and $\omega_0 = f^{-1}(\{0\})$. Prove that $N(f(T)) = R(E(\omega_0))$.	[6]
(b)	Let $T \in B(H)$ be a positive operator. Prove that T has a unique positive square root.	[6]
	OR	
(b)	Let $M, N, T \in B(H)$. Let M and N be normal and T be invertible such that $M = TNT^{-1}$. Let $T = UP$ be the polar decomposition of T . Then prove that $M = UNU^{-1}$.	[6]
Q.6		[6]
(a) (b)	Prove that $ S+T _1 \le S _1 + T _1$ $(S, T \in B_1(H))$. Let $T \in B_1(H)$ and E be an orthonormal basis. Then prove that $\sum_{e \in E} \langle Te, e \rangle < \infty$ and	[6]
	$\sum \langle Te,e \rangle$ is independent of E .	[6]
	$e{\in}E$	
(1.)	OR OR OR	[6]
/ h)	Libraria that Rel H 1 10 an 1001 in Bi H 1	10

THE END

Sardar Patel University

M.Sc. (Sem-IV), PS04EMTH13, Financial Mathematics-II; Saturday, 15th April, 2017; 02.00 p.m. to 05.00 p.m.

Maximum Marks: 70

Note: (i) Notations and terminologies are standard; (ii) Figures to the right indicate marks;

,	The required table of normal distribution	is attached with this question paper.
	\$100 is initially deposited, how much in (A) \$1.005 (B) \$101.005	er annum with continuously compounded. If atterest will be earned after one month? (C) \$112 (D) none of these
2	L. If you put funds into an account that	pays interest rate 9% compounded annually,
	approximately how many years does it	take for your funds to anadruple?
	(A) 9 (B) 20	
3	3. The value of forward contract, F_0 is given	
	(A) $S_0 e^{(r+r_f)T}$ (B) $S_0 e^{(r-r_f)T}$	(C) $S_0 e^{(r_f - r)T}$ (D) None of these
4	. The Put Call Parity for European optic	on an asset paving dividend viold a ic
	(A) $Se^{-q(T-t)} + P - C = Ke^{-r(T-t)}$	(B) $S + P + C = Ke^{-r(T-t)}$
	(C) $S + P - C = Ke^{-r(T-t)}$	(D) $Se^{-q(T-t)} - P + C = Ke^{-r(T-t)}$
5	. A short position in $$ option	should be hedged by a long position of delta
	number of underlying assets.	and the state of t
	(A) American put	(B) European put
	(C) European call	(D) None of these
6	. The value of theta at striking price is a	lways
	(A) maximum (B) minimum	(C) 0 none of these and in
7	. The variance of a random variable X is	given by
	(A) $V(X) = E(X^2) - [E(X)]^2$	(B) $V(X) = [E(X)]^2 - E(X^2)$
	(C) $V(X) = E(X) - E(X^2)$	(D) None of these
8	. The probability of a 'down movement' i	n one step binomial model is given by
	(A) $\frac{e^{rT}-d}{u-d}$ (B) $\frac{e^{rT}-d}{d-u}$	(C) $\frac{e^{rT}-u}{d-u}$ (D) $\frac{e^{-rT}-d}{u-d}$
2.2	2 Attempt any seven:	
		ayment at the end of the month, how much
. /	amount of car can you afford if interest	

Q

[14]

- (car can you afford if interest rate is 7 % per annum with monthly compounding for 36 months loan?
- (b) Give a formula that approximates the number of years it would take your funds to triple if you received interest at a rate r compounded continuously.
- (c) Define rate of return with an example.
- (d) Write down BSM formulas for currency options.
- (e) Define the greek letter rho. What is rho for European call option?
- (f) Write down formulas of theta for European options.
- (g) Write down relationship between Δ , Γ and Θ using BSM differential equation on an asset paying no dividend.
- (h) Draw tree of asset prices with four equal time intervals.
- (i) Define delta using binomial tree.

Q.3

- (a) Define yield curve and show that the yield curve $\bar{r}(t)$ is a non decreasing function of [6] t iff $(P(t))^{\alpha} \leq P(\alpha t)$ for all $0 \leq \alpha \leq 1, t \geq 0$.
- (b) A company needs a certain type of machine for the next five years. They presently own such a machine, which is now worth £8000 but will lose £2000 in value in each of the next four years, after which it will be worthless and unusable. The (beginning of the year) value of its yearly operating cost is £9000, with this amount expected to increase by £2000 in each subsequent year that is used. A new machine can be purchased at the beginning of i^{th} year for a fixed cost of £(2000(10 + i)), where i = 1, 2, 3, 4, 5. Its value decreases by £2000 per year of use. The operating cost of a new machine is £6000 in its first year, with an increase of £1000 in each subsequent year. If the interest rate is 10% compounded yearly, when should the company purchase a new machine?

OR

(b) A professor who plans to retire in 20 in years has decided to put an amount C in the bank at the beginning of the each of the next 240 months, after which he will withdraw £3000 at the beginning of each of the next 360 months. The nominal interest rate is 6% per annum with compounded monthly. Find the value of C.

Q.4

(a) Discuss jump condition for discrete dividend.

[6]

(b) Derive the BSM formulas of an asset providing a constant dividend yield.

[6]

(b) If the 2-year interest rates in Australia and United States are 5% and 7% per annum with continuously compounding, respectively, and the spot exchange rate between Australian dollar (AUD) to the US dollar (USD) is 0.6200 USD per AUD. Find the value of futures contract. Justify it.

OR

Q.5

- (a) Explain: 'a short position in a European put option should be hedged by a short [6] position of underlying assets' with an example.
- (b) Derive Gamma for European put option on an asset paying no dividend.

[6]

OR

(b) Explain Generalized two step binomial model.

Q.6

- (a) Derive formula for American put option using binomial model in which there are N [6] subintervals of length Δt .
- (b) A 2 months American put option on a stock has an exercise price of \$480. The current stock price is \$484, the risk free interest rate is 10% per annum with continuously compounding, the dividend yield on the stock is 3% per annum and the volatility is 25% per annum. Using binomial model, find the value of option when the life of the option is divided into 4 subintervals of length half month.

OR

(b) Determine p, u and d in terms of σ , r and Δt using binomial model.

* * * *

Table for N(x) When $x \ge 0$

This table shows values of N(x) for $x \ge 0$. The table should be used with interpolation. For example,

N(0.6278) = N(0.62) + 0.78[N(0.63) - N(0.62)] $= 0.7324 + 0.78 \times (0.7357 - 0.7324)$ = 0.7350

x	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
, 0.0	0.5000	0.5040	0.5080	0.5120.	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9986	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996		0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4.0	1.0000	1.0000	1.0000	1.0000	0000.1	1.0000	1.0000	1.0000	1.0000	1.0000

Table for N(x) When $x \le 0$

This table shows values of N(x) for $x \le 0$. The table should be used with interpolation. For example,

N(-0.1234) = N(-0.12) - 0.34[N(-0.12) - N(-0.13)] $= 0.4522 - 0.34 \times (0.4522 - 0.4483)$ = 0.4509

	.00	.01	.02	.03	.04	.05	.06	.07	.08	. 09
<u> </u>	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
-0.0		0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.1	0.4602 0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.2	0.4207	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.3	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0,4				0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.5	0.3085	0.3050	0.3015	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.6	0.2743	0.2709	0.2676	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0,2148
-0.7	0.2420	0.2389	0.2358	0.2327	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.8	0.2119	0.2090	0.2061	0.2933	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.9	0.1841	0.1814	0.1788			5	0.1446	0.1423	0.1401	0.1379
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469		0.1423	0.1190	0.1170
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230 0.1038	0.1210	0.1003	0.0985
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1036	0.1020	0.0838	0.0823
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885		0.0708	0.0694	0.0681
-1.4	8080.0	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721			0.0559
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367 0.0294
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-2.0	0.0226	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.1 -2.2	0.0179	0.0174	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
	0.0137	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.3	0.0107	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.4			0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.5	0.0062	0.0060	0.0039	0.0037	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.6	0.0047	0.0045	0.0044	0.0032	0:0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.7	0.0035	0.0034	0.0033	0.0032	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.8	0.0026	0.0025	0.0024	0.0023	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.9	0.0019	0.0018			0.0012	0.0011	0.0011	0,0011	0.0010	0.0010
-3.0	0.0014	0.0013	0.0013	0.0012	0.0012	8000.0	0.0008	0.0008	0.0007	0.0007
-3.1	0.0010	0.0009	0.0009	0.0009	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.2	0.0007	0,0007	0.0006	0.0006	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.3	0.0005	0.0005	0.0005	0.0004		0.0004	0.0003	0.0003	0.0003	0.0002
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	1: "1	45.14	0.0002	0.0002	0.0002
-3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0001	0.0001
-3.6	0.0002	0.0002	0:0001	0.0001	0.0001	0.0001	0.0001 0.0001	0.0001	0.0001	0.0001
-3.7	1000.0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.000
-3.8	0.0001	0.0001	0.0001	0.0001	0.0001	1000.0	and the first transfer of the contract of the	0.0000		
3.9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000		
-4.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

[34/A-33]

SARDAR PATEL UNIVERSITY

M.Sc. (Semester-IV) Examination

April - 2017

Thursday, 20 April, 2017 Time: 02:00 PM to 05:00 PM

Subject:	Math	ematics
----------	------	---------

II)

Subj	ject: Mathematics Cou	urse No.: PS04EMTH15 (Relativity-I
	 All questions (including multiple choice questions) are to be answered. Numbers to the right indicate full marks of the respective question. Use the expressions in the Appendix if necessary. 	ared in the answer book only
Q-1	Choose most appropriate answer from the options given.	(08)
(1)	Which one of the following is correct? (a) $g^{ij} = -g^{ji}$ (b) $g^{ij} = G^{ij}$ (c) $g_i^i = \delta_i^i$	(d) none of these
(2)	Which one of the following is true? (a) $\Gamma_{jk}^{i} = \Gamma_{kj}^{i}$ (b) Γ_{jk}^{i} form a tensor (c) Γ_{jk}^{i} form a tensor of type (1,2) (d) none of these	r type (2,1)
(3)	The condition for a Riemannian space to be empty is (a) $R_{hijk} = 0$ (b) $R_{ij} = 0$ (c) $R_{ij} \neq 0$ (d) $R_{hijk} \neq 0$	/ 0
(4)	Which one of the following is correct? (a) Schwarzschild exterior solution is valid in empty region. (b) Schwarzschild interior solution is valid in empty region. (c) Schwarzschild exterior solution represents correct model of (d) none of the above	
(5)	In Schwarzschild metric $r = 0$ (a) is a removable singularity (b) always lies inside th (c) is a regular point (d) is an essential singularity	e body
(6)	(c) is a regular point (d) is an essential singular Bending of light (a) can not be explained using general relativity (b) can not be observed	arity
(7)	(c) can not be explained using Newtonian theory(d) can be explained using Newtonian theoryWhich one of the following is correct?(a) Acceleration of a particle moving in de-Sitter universe is zero	ro
(8)	(b) Acceleration of a particle moving in Einstein universe is zer(c) de-Sitter universe is non-static(d) Einstein universe is non-staticWhich one of the following is correct?	°O
	 (a) In Robertson-Walker metric R is a decreasing function (b) In Robertson-Walker metric R is an increasing function (c) Robertson-Walker metric describes an empty space (d) None of the above. 	
Q-2	Answer any Seven.	(14)
(1) (2)	State expressions of Christoffel symbols of both kinds. State symmetry properties of Ricci tensor and hence find the ma of independent components of Ricci tensor.	, <i>,</i>
(3) (4) (5)	State Schwarzschild exterior metric in Kruskal coordinates. State Birkhoff's theorem. What is condition for dust in the energy-momentum tensor for a	nerfect fluid
	Gy total total	portour itulu.

- (6) What is volume of Einstein's spherical universe?
- (7) Is it true that de-Sitter universe is completely empty? Justify your answer.
- (8) State cosmological principle for the universe.
- (9) What is meant by Friedmann models?

Q-3

- (a) State the expression of Riemann tensor and discuss its algebraic properties. (06)
- (b) Obtain geodesic equations on the unit sphere. (06)

OR

(b) Define covariant derivative of a covariant vector. Show that it forms a covariant tensor of rank two.

Q-4

- (a) State Schwarzschild exterior metric. Find the expression of velocity of a radial light ray. In terms of this describe the singularity at r = 2m.
- (b) Give outlines of derivation of Schwarzschild interior metric. (06)

OR

(b) Derive the relativistic equation of orbit of a planet.

Q-5

- (a) Giving all details derive the metric of de-Sitter universe. (06)
- (b) Discuss the motion of a particle in Einstein universe. (06)

OR

(b) Define Einstein space and show that Einstein universe is not an Einstein space.

Q-6

- (a) For the Robertson-Walker metric derive the relation between the scale factor and red-shift. (06)
- (b) Obtain metric for a 3-sphere in the form $d\sigma^2 = R^2 \left[\frac{d\vec{r}^2}{1 \vec{r}^2} + \vec{r}^2 d\Omega^2 \right]$, the notations being usual.

OR

(b) Discuss in brief the Freidmann models of the universe.

Appendix

For the spherically symmetric static metric $ds^2 = -e^{\lambda(r)}dr^2 - r^2(d\theta^2 + \sin^2\theta d\phi^2) + e^{\nu(r)}dt^2$, non-zero independent Christoffel symbols and components of Ricci tensor are as under,

$$\Gamma_{11}^{1} = \frac{\lambda'}{2}, \quad \Gamma_{22}^{1} = -re^{-\lambda}, \quad \Gamma_{33}^{1} = -re^{-\lambda}\sin^{2}\theta, \quad \Gamma_{44}^{1} = e^{\nu-\lambda}\frac{\nu'}{2}, \quad \Gamma_{12}^{2} = \Gamma_{13}^{3} = \frac{1}{r}, \quad \Gamma_{33}^{2} = -\sin\theta\cos\theta, \quad \Gamma_{23}^{3} = \cot\theta, \quad \Gamma_{14}^{4} = \frac{\nu'}{2}$$

$$R_{11} = \frac{v''}{2} + \frac{{v'}^2}{4} - \frac{\lambda' v'}{4} - \frac{\lambda'}{r}, \ R_{22} = -1 + e^{-\lambda} - \frac{1}{2} r e^{-\lambda} (\lambda' - v'),$$

$$R_{33} = \sin^2 \theta \ R_{22}$$
, $R_{44} = -e^{\nu - \lambda} \left[\frac{\nu''}{2} + \frac{{\nu'}^2}{4} - \frac{\lambda' \nu'}{4} + \frac{\nu'}{r} \right]$

For R-W metric the non-zero components of Ricci tensor are given by,

$$\frac{R_{11}}{g_{11}} = \frac{R_{22}}{g_{22}} = \frac{R_{33}}{g_{33}} = \frac{\ddot{R}}{R} + 2\left(\frac{\dot{R}^2 + k}{R^2}\right) , \quad \frac{R_{44}}{g_{44}} = \frac{3\ddot{R}}{R}$$

No of printed pages: 2

Sardar Patel University

M.Sc. (Sem-IV), PS04EMTH21, Mathematics Education-II; Saturday, 22nd April, 2017; 02.00 p.m. to 05.00 p.m.

Maximum Marks: 70

No

ote:	(i) Notations and ter	rminologies are sta	ındard; (ii) Figures t	to the right indicate marks.	
•	Answer the following $Log(-1) =$	J.			[8]
	$ \begin{array}{c} (A) & \infty \\ (\frac{1-i}{\sqrt{2}})^{20} = \end{array} $	(B) <i>i</i> π	(C) $-i\pi$	(D) −∞ ¹	
	(Å) 1	(B) $\frac{1}{2}$	(C) -1	(D) none of these	
3.			·	annum with continuously	
	compounding. Then		. I	(D) of these	
4	(A) ₹110 The set of discerting	(B) ₹90	(C) ₹100	(D) none of these	
4.	The set of discontinu	,		•	
		$f(x) = \begin{cases} 1, \\ 0, \end{cases}$	if $x \in \mathbb{Q}$ otherwise,		
	(A) Q	(B) ℝ	(C) $\{0,1\}$	(D) { }	
5.	The equation $x^2 + y$				
	(A) ellipse	• • •	(C) circle	(D) hyperbola	
6.	Which one from the				
7	(A) e^{π} The Bieberbach con	(B) e	(C) π	(D) $\sin(\pi)$	
	(A) Euler (D) Paul Erdos	(B) Louis de Bra		(C) Apple and Haken	
8.	• ,	hat the number of	primes less than or	equal to n is approximately	
	(A) $n \ln(n)$	(B) $\frac{\ln(n)}{n}$	(C) $\frac{n}{\ln(n)}$	(D) none of these	
Ω_{2}			m(IV)		[14]
	Attempt any seven Draw graph of $f(x)$				[]
	Transform $r = 2(1 + 1)$		n form.		
(c)	Give postulates of C	Coordinate Geome	try.	•	
(d)				$x - 0.02x^2$ where x is the	
		_	many tons will give	maximum profit and what	
	is the maximum pro				
(e)	Evaluate $\lim_{n\to\infty} \frac{(1+2+n)^2}{(n^2+1)^2}$	$\frac{1}{(1-n^2)}$.		_	
			of set theory? What	t was his nationality?	
,-,	What is Bolzano's p				
	What is four color p	· ·			
(1)	Discuss Riemann's l	ny pouneara.			

Q.3		
(a)	·	[06]
(b)	Give applications of Coordinate Geometry.	[06]
` '	OR	[00]
(b)	If $60^x = 3$ and $60^y = 5$, then find $12^{\frac{1-x-y}{2(1-y)}}$.	
Q.4		
(a)	Write biography from the following (any one): (i) Archimedes (ii) Leibnitz (iii) Newton	[06]
(b)	Discuss in detail the development of calculus.	[06]
	OR	f 1
(b)	Find the extremum of $f(x,y) = x^2 + y^2 + 2(\frac{x+y}{xy})$.	
Q.5		
4- 1	State (i) Zeno's paradox (ii) Euler's paradox (iii) Russell's paradox. Discuss Cantor's contribution in set theory.	[06] [06]
	OR	[00]
(b)	Five children A,B,C,D and E participated in the race. From the following pairs of statements, exactly one is statement is true. Find the rank of each child in the race. (I) A is second, B is third (II) C is third, D is fifth (III) D is first, C is second (IV) B is first, E is fourth	
Q.6		
	Discuss the development of modern mathematics.	[06]
(b)	State (i) Ramsey's problem (ii) Konigsberg seven bridge problem.	[06]
	OR	
(b)	Discuss prime number theorem.	

* * * *

SARDAR PATEL UNIVERSITY

M.Sc. (Semester-IV) Examination

April - 2017

Saturday April 22, 2017 Time: 02:00 PM to 5:00 PM

Subject: Mathematics
Course No.PS04EMTH30 (Operations Research)

Note:	(1) All questions (including multiple choice questions) are to be answered in the answer book only. (2) Numbers to the right indicate full marks of the respective question.
Q-1	Choose most appropriate answer from the options given. (08)
(2)	An LPP must have (a) a linear objective function (b) at least one linear constraints (c) at least three decision variables A constraint puts restriction on
(3)	O Transmort region 15
(4)	(a) a parallelogram (b) convex (c) open (d) a null set A basic feasible solution to a system is called if any of basic variables vanishes.
(5) (6) (7) (8)	 (a) transportation problem is an assignment problem (b) assignment problem is a transportation problem (c) transportation problem is an NLPP (d) none of these
Q-2	(d) either (a) or (b) Answer any Seven.
(1)	What is the meaning of unbounded solution? Show that the set $\{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le 1\}$ is a convex set. What is use of a slack variable? How a minimization problem is dealt in simplex method? Define net evaluation in simplex method. Explain the term "dummy destination" in context of a transportation problem. Describe NWC method for finding an IBFS to a transportation problem. Explain constraints in an assignment problem. Explain drawbacks of using graphical method for solving an NLPP.

- (a) Describe the steps in graphical method for solving an LPP. Also describe (06)limitations of this method.
- (b) A company produces two different headache pills A and B. A pill of type A (06)contains 2 mg aspirin, 5 mg bicarbonate and 1 mg codeine. A pill of type B contains 1 mg aspirin, 8 mg bicarbonate and 6 mg codeine. Research shows that a patient of headache requires at least 12 mg aspirin, 24 mg codeine and 74 mg bicarbonate for the immediate relief. Formulate a standard LPP to determine the least number of pills a patient should take for immediate relief.

Solve the following L.P.P. by Simplex Method: (b) $\text{Max } Z = 5x_1 + 10x_2 + 8x_3 \text{ subject to}$ $3x_1 + 5x_2 + 2x_3 \le 60, 4x_1 + 4x_2 + 4x_3 \le 72, 2x_1 + 4x_2 + 5x_3 \le 100$ and $x_1, x_2, x_3 \ge 0$.

Q-4

When Big M method is useful? Describe the steps in it. (06)Obtain the dual of the following problem: (06) $\max Z = x_1 + 3x_2 - 2x_3 + 5x_4$

subject to $3x_1 - x_2 + x_3 - 4x_4 = 2$, $5x_1 + 3x_2 - x_3 - 2x_4 = 3$; $x_1, x_2 \ge 0$ and x_3, x_4 unrestricted in sign.

(b) Solve the following L.P.P. by using two-phase method: $\operatorname{Max} Z = 5x_1 + 3x_2$ subject to $2x_1 + x_2 \le 1$, $x_1 + 4x_2 \ge 6$, and $x_1, x_2 \ge 0$.

Q-5

- (a) Describe uv-method for determining optimality for a transportation problem. (06)Obtain an initial BFS to the following TP using VAM. Also find the cost (06)
- involved in the solution you obtained.

	D1	D2	D3	D4	D5	Availability
O1	4	5	7	9	10	20
O2	3	1	2	6	9	30
O3	. 8	12	. 15	30	4	17
O4	3	2	10	13	17	13
Demand	40	8	7	19	6	
				OD		the state of the s

(b) Solve the following assignment problem using Hungarian method.

	A	B	C	D
I	1	4	6	3
II	9	7	10	9
III	4	- 5	11	7
IV	8	. 7	8	5

0-6

- (a) Derive the condition for maximization in terms of bordered Hessian matrix for a (06)general NLPP with m (<n) constraints.
- (b) Obtain the condition for Maximum $z = 4x_1^2 + 2x_2^2 + x_3^2 4x_1x_2$ subject to $x_1 + x_2 + x_3 = 15$, $2x_1 x_2 + 2x_3 = 20$; $x_1, x_2, x_3 \ge 0$. (06)

(b) Find the measures of sides parallel to coordinate planes of a rectangular parallelepiped with largest volume inscribed in the unit sphere.