Sardar Patel University M.Sc. (Mathematics) Ist Semester PS01EMTH21 - Graph Theory I Saturday, November 3, 2018

Time:	10.00	a.m.	to	01.00	p.m.

Total Marks: 70

Q.1 Choose the most appropriate option in the following questions.

[08]

1. For $G = C_7$ if diam(G) = d and rad (G) = r, then

(a) d = r

(b) d < r

(c) d > r

(d) None of these

2. If G is complete symmetric diagraph with n vertices, then |E(G)| =

(a) $\frac{n(n-1)}{2}$

(b) n(n-1)

(c) n2

(d) None of these

3. Let T be a spanning in-tree with root R. then

(a) $d^+(R) > 0$

(b) $d^-(R) = 0$

(c) $d^-(R) > 0$

(d) None of these

4. A regular diagraph is

(a) weakly connected (b) Euler

(c) symmetric

(d) None of these

5. The chromatic number of C_{2m+1} $(m \in \mathbb{N})$ is

(a) 2

(b) m

(c) 2m

(d) None of these

6. The coefficient c_4 in chromatic polynomial of K_5 is

(a) 0

(b) 1

(c) !

(d) None of these

7. If $G = C_6$ and M is a maximal matching in G, then |M| =

(a) 2

(b) 3

(c) 4

(d) None of these

8. If $G = P_9$, then $(\beta(G), \beta'(G)) =$

(a) (5,5)

(b) (4,5)

(c) (4 4

(d) None of these

Q.2 Attempt any seven.

[14]

1. Find the radius of $K_{m,n}$ $(m, n \ge 2)$.

2. Write any four properties of tree.

3. Define spanning out-tree with example.

4. Define strongly connected diagraph with example.

5. If G is a tree, then show that $\chi(G) = 2$.

6. What is four color problem?

7. Is K₅ uniquely colorable? Justify your answer.

8. State Hall's theorem.

9. Define vertex cover with example.

Q.3

(a) Discus in details Teleprinter problem for r = 4.

[06]

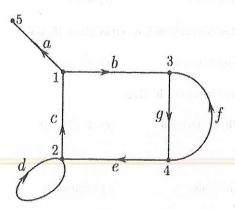
(b) Define the following with example (1) Clique, (2) complete bipartite graph and (3) Independence [06] number

P.T.O)

(b) Define the following with example (1) Eccentricity of vertex, (2) Center of graph and (3) Radius [06] of graph.

Q.4

- (a) Let G be a diagraph without self loop. Let A and B denote the incidence matrix and circuit matrix respectively. Suppose that the edges are arranged in the same order in A and B. Show that $AB^T = 0$.
- (b) Define Adjacency matrix for diagraph. Find Adjacency matrix of the following diagraph. [06]



OR

(b) Define spanning in-tree. In the following diagraph, find a spanning in-tree having the vertex R as a root.



Q.5

(a) Find Chromatic polynomial of $K_{2,2}$.

[06]

(b) Suppose G be a simple graph with n vertices $(n \ge 3)$. If $\delta(G) \ge \frac{n}{2}$, then show that G is Hamiltonian.

[06]

(b) If G has a Hamiltonian cycle, Then show that for each nonempty set $S \subseteq V$, the graph $G \setminus S$ has at most |S| components.

Q.6

(a) If G is a bipartite graph, then Show that $\alpha'(G) = \beta(G)$.

- (b) Define symmetric difference. Show that every component of the of the symmetric difference of two matchings is a path or an even cycle.

OR

[06]

(b) For k > 0, show that every k-regular bipartite graph has a perfect matching.

[06]

