	Seat	No.	
-			

[39]

No. of printed pages: 2

SARDAR PATEL UNIVERSITY

M.Sc. (Mathematics) Semester - I Examination Saturday, 03rd November, 2018

PS01EMTH02, Mathematical Classical Mechanics

Time: 10):00 a.m.	to	01:00	p.m.	
----------	-----------	----	-------	------	--

Maximum marks: 70

Note: (1) Figures to the right indicate marks of the respective question.

(2) Assume usual/standard notations wherever applicable.

Q-1 Choose the most appropriate option for each of the following questions.

[08]

[14]

- 1. A force \bar{F} is called conservative if _____ for some scalar potential V.

 (a) $\bar{F} = \lambda V$ (b) $\bar{F} = -\nabla \times V$ (c) $\bar{F} = \nabla V$ (d) $\bar{F} = -\nabla V$

- 2. Degrees of freedom of a particle moving on a circle is ____
 - (a) 3
- (b) 2
- (c) 1
- (d) 0

- 3. _____ is a brachistochrone curve.
 - (a) Catenary
- (b) Cycloid
- (c) Straight line (d) Great circle
- 4. If Lagrangian does not depend on t explicitly, then _____ is conserved.
 - (a) L
- (b) h
- (c) q
- 5. If all the coordinates of a system are non-cyclic, then Routhian $R = _$
- (b) *H*

- 6. Hamilton's equations of motion in matrix form is given by $J \frac{\partial H}{\partial \eta} = \underline{\hspace{1cm}}$ (a) J (b) $\dot{\eta}J$ (c) $\dot{\eta}$ (d) $-J\dot{\eta}$
- (b) $\dot{\eta}J$

- 7. For symplectic matrices M and N, _____ need not be symplectic.

 - (a) MN' (b) M+N
- (c) $M^{-1}N$
- (d) MJN
- 8. $[q_1, p_2] + \{p_2, q_1\} =$ _____; notations being usual. (a) 0 (b) -1 (c) -2
 - (a) 0

- (d) 2

Q-2 Attempt any seven of the following.

- (a) Define a scleronomic constraint and give its example.
- (b) State Lagrange's equations of motion in presence of frictional forces.
- (c) State the condition for extremum of the integral $\int_{x_1}^{x_2} f(y_1, \dots, y_n, \dot{y}_1, \dots, \dot{y}_n, x) dx$?
- (d) State law of conservation of linear momentum in Lagrangian formalism.
- (e) Let $L = a\dot{x}^2 + b\frac{\dot{y}}{x} + c\dot{x}\dot{y} + fy^2\dot{x}\dot{z} + g\dot{y} k\sqrt{x^2 + y^2}$ be Lagrangian of a system. How many generalized coordinates are there? Which of them are cyclic? Justify.
- (f) State Hamilton's modified principle.
- (g) Show that if a generalized coordinate q_j is cyclic in L then it is cyclic in H.
- (h) State the symplectic condition for a transformation to be canonical.
- (i) Define Lagrange bracket of two quantities u(q, p, t) and v(q, p, t).

Q-3 (a) Using D'Alembert's principle show that $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_j, \ j = 1, 2, \dots, n.$ [06]

(P.T.O.)

(b) Obtain Lagrange's equations of motion for a particle moving in space under a [06]force \bar{F} using Cartesian coordinates. OR [06](b) In usual notations, show that $T = T_0 + T_1 + T_2$. Q-4 (a) Derive the condition for extremum of the line integral $\int_{x_1}^{x_2} f(y, \dot{y}, x) dx$. [06] (b) State and prove the law of conservation of angular momentum in Lagrangian [06]formalism. OR [06](b) Lagrangian of the spherical pendulum is given by $L = \frac{m}{2}l^2(\dot{\theta}^2 + \dot{\phi}^2\sin^2\theta) + mgl\cos\theta.$ Evaluate the energy function. Is it conserved? Justify. Q-5 (a) Using an appropriate Legendre transformation derive Lagrange's equations of [06]motion from Hamilton's equations of motion. [06](b) Discuss the principle of least action. OR(b) Describe the Routhian procedure and state the Routhian equations of motion. [06][06]Q-6 (a) Prove that an infinitesimal transformation is canonical. [06](b) Show that the transformation $Q = \log\left(\frac{\sin p}{q}\right)$, $P = q \cot p$ is canonical. (b) If $\bar{F} = (F_1, F_2, F_3)$, $\bar{G} = (G_1, G_2, G_3)$ and \bar{L} denotes angular momentum, then [06]show that $[\bar{F} \cdot \bar{G}, \hat{n} \cdot \bar{L}] = 0$.