(a) -1Q-2 Attempt Any Seven of the following:

8. Let $A \in M_6(\mathbb{C})$ be regular. Then $\det(iA) \det(A^{-1}) = \underline{\hspace{1cm}}$.

(b) 1

(a) 4

(b) 8

14

(a) Check if the set $\{(3,5i,-7),(8i,-3,2i),(18,-i,20)\}$ is linearly independent over \mathbb{C} .

(d) cannot be determined

- (b) Let U and W are subspaces of a vector space V. Show that $W^0 \subset U^0$ if $U \subset W$.
- (c) Let \mathscr{A} be an algebra over F with unit element e such that $\dim \mathscr{A} = m$. Show that every element of \mathscr{A} satisfies a non-trivial polynomial over F of degree at most m.
- (d) Let $F_n[x]$ denote the set of polynomials over F of degree at most n. Is $F_n[x]$ an algebra over F? Justify.
- (e) Let V be a vector space over F and $S, T \in A(V)$ be nilpotent. Show that ST is nilpotent if ST = TS.
- (f) Let V be a vector space over a field F and $T \in A(V)$. Show that $\ker(T)$ is an invariant subspace of V under T.

- (g) For $A, B \in M_n(\mathbb{R})$, show that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- (h) Let F be a field and $A \in M_n(F)$ be invertible. Then show that $\det(A^{-1}) = \frac{1}{\det(A)}$.
- (i) Compute the inertia of the quadratic form: $x^2 + y^2 + z^2$.
- Q-3 (a) Let V be a finite-dimensional vector space over a field F and W be a subspace of V. [06]Show that $\dim V/W = \dim V - \dim W$.
 - (b) Let F be the field of all real numbers and let V be the set of all sequences (a_1, a_2, \ldots) , [06] $a_i \in F$, where equality, addition and scalar multiplication are defined componentwise. Prove that V is a vector space over F.

- (b) Let V be a finite-dimensional vector space over F. If A and B are subspaces of V, [06] then show that (A+B)/B is isomorphic to $A/(A\cap B)$.
- Q-4 (a) Let \mathscr{A} be an algebra over a field F. Show that \mathscr{A} is isomorphic to a subalgebra of |06| $A(\mathscr{A})$.
 - (b) Let V be vector space of polynomials of degree 3 or less over F. Let $T \in A(V)$ be [06] defined by $T(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3) = \alpha_1 + 2\alpha_2 x + 3\alpha_3 x^2$. Find the matrix A of T in the basis $v_1 = 1, v_2 = x, v_3 = x^2, v_4 = x^3$ and the matrix B of T in the basis $u_1 = 1, u_2 = 1 + x, u_3 = 1 + x^2, u_4 = 1 + x^3$. Hence, find a matrix C such that $C^{-1}AC = B.$

- (b) Let V be a vector space over F and $T \in A(V)$. Show that characteristic vectors [06] corresponding to distinct characteristic roots of T are linearly independent.
- Q-5 (a) Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent. Prove [06] that the invariants of T are unique.
 - (b) Find all possible Jordan forms for 6×6 matrices having $(x-2)^2(x-5)^2$ as minimal |06|polynomial.

OR

- (b) Let V be a finite-dimensional vector space over F and $T \in A(V)$. Let W be a [06] subspace of V invariant under T. Let $\bar{T}: V/W \to V/W$ be defined by $\bar{T}(v+W) =$ T(v) + W. Show that \bar{T} is well-defined and $\bar{T} \in A(V/W)$. Also show that minimal polynomial for \overline{T} over F divides minimal polynomial for T over F.
- Q-6 (a) For $A, B \in M_n(F)$, show that $\det(AB) = \det(A) \det(B)$. [06]
 - i. Prove or disprove: If $A \in M_n(\mathbb{R})$ such that tr(A) = 0, then A is nilpotent. |02|ii. Use Cramer's rule to solve the following system in the real field. [04]

the following system in the real field:
$$x+y+z=1,$$

$$2x+3y+4z=1,$$

$$x-y-z=0.$$
 OR

Satisfied the mark him

(b) Reduce the quadratic equation $3x^2 + 2xy + 3y^2 = 8$ into standard form by finding [06] an orthogonal matrix P. Hence determine the conic section represented by it.