No. of Printed Pages , 2_

Sardar Patel University.

M.Sc. (Mathematics) External Examination 2018;

Code:- PS01CMTH23: Subject:- Functions of Several Real Variables; Date: 24-10-2018, Wednesday; Time- 10.00 am to 01.00 pm; Max. Marks 70 Note: Notations and Terminologies are standard.

Q.1 Choose correct option from given four choices.

[80]

- (i) Let $x = (\sqrt{\pi}, 0, -1)$ and $y = (0, -\sqrt{e}, 1)$. Then ||x + y|| =
 - (a) $\sqrt{\pi + e}$
- (b) $\pi + e$
- (c) $\sqrt{\pi + e + 1}$
- (d) $\pi + e + 1$
- (ii) Which of the following map $T: \mathbb{R}^2 \longrightarrow \mathbb{R}$ is linear?
 - (a) $T(x) = x_1 x_2$
- (b) $T(x) = x_1 + x_2$ (c) $T(x) = x_1 + 2$
- (d) $T(x) = 1 + x_2$
- (iii) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined as $f(x) = \sin(x) + x$ ($x \in \mathbb{R}$). Then Df(0)(x) =
 - (a) $\cos(x)$
- (b) x
- (c) 2x
- (d) 3x
- (iv) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ such that $D_x f(a)$ exists for all $x \in \mathbb{R}^n$. Then
 - (a) f is continuously differentiable at a
- (c) f is continuous at a
- (b) f is differentiable at a
- (d) $D_j f(a)$ exists for all $1 \le j \le n$
- (v) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be defined as $f(x) = e^{x_1}$. Then Df(0) =
- (b) π_1
- (c) $e\pi_1$
- (d) e^{π_1}
- (vi) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be differentiable at 0. Then which of the following is not true?
 - (a) f is continuous at 0
 - (b) Partial derivatives of f exist at 0
 - (c) f is continuously differentiable at 0
 - (d) Directional derivatives of f exists at 0
- (vii) Let $S \in \mathcal{T}^1(V)$ and $T \in \mathcal{T}^5(V)$. Then $S \otimes T$ belongs to
 - (a) $\mathcal{T}^1(V)$
- (b) $T^5(V)$
- (c) $T^6(V)$
- (d) none
- (viii) Let π_1 and π_2 be the projection maps on \mathbb{R}^2 . Then $\pi_1 \wedge \pi_2 =$
 - (a) $\pi_1 \otimes \pi_2 + \pi_2 \otimes \pi_1$ (b) $\pi_1 \otimes \pi_2 \pi_2 \otimes \pi_1$ (c) $\pi_1 \otimes \pi_2$
- (d) $\pi_2 \otimes \pi_1$

Q.2 Attempt any seven.

[14]

- (i) Prove that $||x + y|| \le ||x|| + ||y|| (x, y \in \mathbb{R}^n)$.
- (ii) Prove that every norm preserving linear map $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is inner product preserving.
- (iii) Prove that every linear map is differentiable. What will be its derivation?
- (iv) State the chain rule.
- (v) If $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is differentiable, then prove that its component f^i is also differentiable.
- (vi) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be differentiable at a. Prove that $D_{sx}f(a) = sD_xf(a)$ $(s \in \mathbb{R}; x \in \mathbb{R}^n)$.
- (vii) Let $T \in \mathcal{T}^2(\mathbb{R}^2)$ be defined as $T(x,y) = x_1y_1$. Find Alt(T).
- (viii) Define vector field and k-form on \mathbb{R}^n .
- (ix) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be differentiable. Define df and prove that it is 1-form on \mathbb{R}^n .

(P.T. O.)

Q.3	2	
(a)	Let $x, y \in \mathbb{R}^n$. Prove that $ \langle x, y \rangle = x y $ iff x and y are dependent. Let $A \subset \mathbb{R}^n$, let $f: A \longrightarrow \mathbb{R}$ be a bounded function, and let $a \in A$. Define $o(f; a)$. Then	[6]
	prove that f is continuous at a if and only if $o(f;a) = 0$.	[6]
	OR	. ,
(b)	Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be linear. Define $ T $ and prove that $ T(x) \le T x $ $(x \in \mathbb{R}^n)$.	[6]
Q.4		
(a)	If a function $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, then prove that there exists unique linear transformation $\lambda: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ such that	[6]
	$\lim_{h \to 0} \frac{\ f(a+h) - f(a) - \lambda(h)\ }{\ h\ } = 0.$	
(b)	Let $f, g: \mathbb{R}^n \longrightarrow \mathbb{R}$ be differentiable. Then prove that $f + g$ and fg are differentiable.	[6]
	OR	. ,
(b)	Define $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ as $f(x) = (x_1x_3, \sinh(x_2))$ $(x \in \mathbb{R}^3)$ and $a = (-1, 0, 2)$. Is f differentiable at a ? If yes, then find its derivation $Df(a)$.	[6]
Q.5		f - 1
(a)	Define the Jacobian matrix $f'(a)$. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $a \in \mathbb{R}^n$. Then prove that $f'(a) = [f^{1'}(a), \dots, f^{m'}(a)]$.	[6]
(b)	Prove that a continuously differentiable function is differentiable.	[6]
	OR	[4]
(b)	Define $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ as $f(x) = (x_1^{x_2}, \cos(x_3x_4), x_2 + x_3)$. Let $a = (2, 3, 1, \pi)$. Find both $f'(a)$ and $Df(a)$.	[6]
Q.6		[-]
(a) (b)	Let V be a vector space with $\dim(V) = n$ and $k \in \mathbb{N}$. Prove that the $\dim(\mathcal{T}^k(V)) = n^k$. Let $S \in \mathcal{T}^k(V)$ such that $\mathrm{Alt}(S) = 0$ and $T \in \mathcal{T}^\ell(V)$. Prove that $\mathrm{Alt}(S \otimes T) = 0$.	[6] [6]

[6]

[6]

(b) Let $\omega \in \Lambda^k(V)$ and $\eta \in \Lambda^l(V)$. Prove that $\omega \wedge \eta = (-1)^{kl}(\eta \wedge \omega)$.