No. of printed pages 2

Sardar Patel University M. J.C. - Mathematics (L.SEM) PS01CMTH21-Complex Analysis I

Time:10.00 a.m. to 01.00 p.m. M.Sc.Ist Semester

Total Marks: 70 Date: 22-10-2018 Mondaj

Q.1 Choose the most appropriate option in the following questions.

[08]

- 1. Arg(1+i) + Arg(-1-i) =_____.
 - (a) 0
- (b) π
- (c) 2π
- (d) None of these
- 2. Suppose z is either real or purely imaginary. Then
 - (a) $z^2 = \bar{z}$
- (b) $(\bar{z})^2 = z$
- (c) $(\bar{z})^2 = z^2$
- (d) None of these
- 3. The set of singularity of the function $f(z) = \frac{1}{\sin \frac{\pi}{z}}$ is
 - (a) {0}

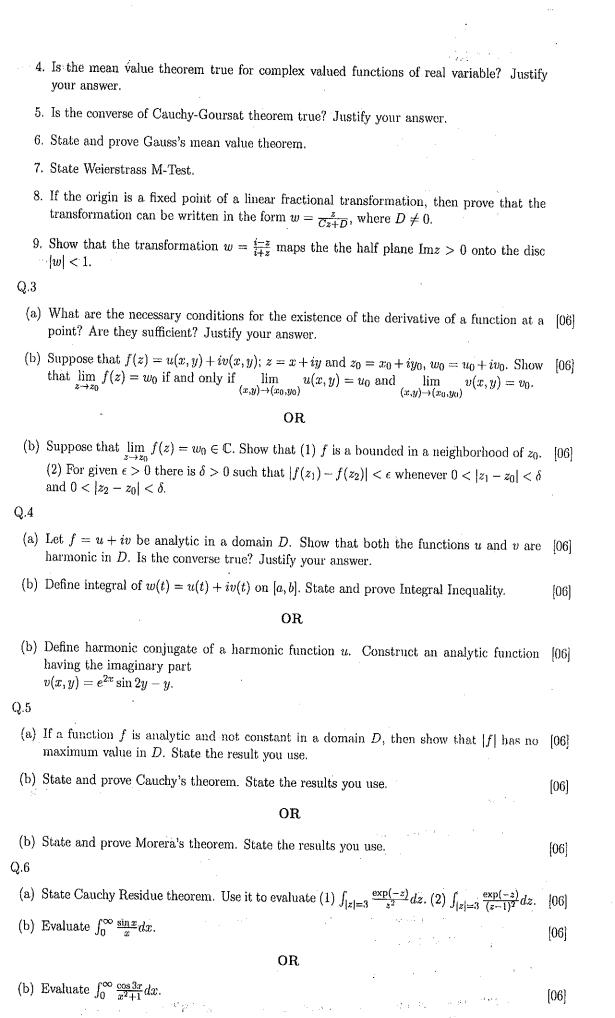
(c) $\left\{0, \frac{1}{n} : n \in \mathbb{Z} \setminus \{0\}\right\}$

(b) $\left\{\frac{1}{n}: n \in \mathbb{Z} \setminus \{0\}\right\}$

- (d) None of these
- 4. If $f(z) = |z|^2$ for all $z \in \mathbb{C}$, then
 - (a) f is not differentiable at 0
- (c) f is entire function

(b) f is analytic at 0

- (d) None of these
- 5. If C is the unit circle taken in the positive direction, then $\int_C \frac{1}{z} dz = \underline{\hspace{1cm}}$
 - (a) $2\pi i$
- (b) 0
- (c) 1
- (d) None of these
- - (a) πi
- (b) 2πi
- (c) 0
- (d) None of these


- 7. $f(z) = \sin \frac{1}{z}$ has
 - (a) no singularity in the plane
- . (c) an essential singularity only at 0
- (b) only a pole at 0

- (d) None of these
- 8. Let T is a linear fraction transformation such that T(0) = 0, T(1) = 1, and $T(\infty) = \infty$.
 - (a) T is a constant map
- (c) no such T exists
- (b) T must be identity map
- (d) None of these

Q.2 Attempt any seven.

[14]

- 1. If $\lim_{z\to z_0} f(z) = w_0$ and $0 \neq w_0 \in \mathbb{C}$, then show that there is c>0 and $\delta>0$ such that $|f(z)| \geq c$ for all z satisfying $0 < |z-z_0| < \delta$.
- 2. If $z_1, z_2 \in \mathbb{C}$, then show that $||z_1| |z_2|| \le |z_1 z_2|$.
- 3. Suppose that f is analytic in a domain D. If f is real valued, then show that f is a constant map.

