Sardar Patel University

M.Sc. (Mathematics) Semester - I Examination Monday, 29th October, 2018 PS01CMTH04, Linear Algebra

Time:	10:00	a.m.	to	01:00	p.m.
-------	-------	------	----	-------	------

Maximum marks: 70

No. of printed pages: 2

Note:

- 1. Figures to the right indicate marks of the respective question.
- 2. Assume standard notations and usual operations wherever applicable.

Q-1 Write the most appropriate option number only for each of the following question.

[08]

- 1. Let V be a vector space over F such that $\dim \widehat{V} = 4$. Then $\dim V = 4$.
- (b) 8
- (d) 4

- 2. Let $V = \mathbb{C} \times \mathbb{R}$. Then dim V over \mathbb{R} is ___
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- 3. Let V be a finite-dimensional vector space over F and $S,T\in A(V)$. If T is regular, then r(ST) _____.
 - (a) = r(T)
- (b) = r(S) (c) < r(TS) (d) $\ge r(T)$
- 4. Let $T:\mathbb{C}^2\to\mathbb{C}^2$ be defined as $T(x,y)=(ix,iy),\ x,y\in\mathbb{C}$. Then the minimal polynomial for T is _____.
 - (a) $1 x^2$
- (b) $1 + x^2$
- (c) $1 x^4$
- (d) $1 + x^4$
- 5. Let $T:\mathbb{R}^3\to\mathbb{R}^3$ be defined by $T(x_1,x_2,x_3)=(0,0,x_1),\ x_1,x_2,x_3\in\mathbb{R}.$ Then the invariants of T are $___$.
 - (a) 1, 1, 1
- (b) 3
- (c) 2, 1
- (d) none of these
- 6. Let V be a vector space and $T \in A(V)$ be nilpotent. Then I T is _____
 - (a) nilpotent
- (b) singular
- (c) regular
- 7. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(x,y,z) = (z,y,x), \ x,y,z \in \mathbb{R}$. Then $\mathrm{tr}(T) = \underline{\hspace{1cm}}$
 - (a) 3
- (b) 2
- (d) 1
- (a) 3

 8. Let $A \in M_3(\mathbb{R})$. Then $\det(2A^2) = \underline{\hspace{1cm}}$.

 (b) $2 (\det(A))^2$ (c) $4 (\det(A))^2$ (d) $64 (\det(A))^2$

Q-2 Attempt Any Seven of the following:

- (a) Check if the set $\{(1,1,0,0),(0,1,-1,0),(0,0,0,3)\}$ is linearly independent over \mathbb{R} .
- (b) Let W are subspaces of a vector space V over F. Define annihilator of W and show that it is a subspace of \hat{V} .
- (c) Let V be a vector space over F and $T \in A(V)$. If $\lambda \in F$ is a characteristic root of T, then show that $T - \lambda I$ is singular
- (d) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(x,y,z) = (x,x+y,x+y+z), x,y,z \in \mathbb{R}$. Find the matrix of T in the basis $v_1 = (1,0,0), v_2 = (1,1,0), v_3 = (1,1,1)$.
- (e) Let V be a vector space over a field F and $T \in A(V)$. Show that $\ker(T)$ is an invariant subspace of V under T.
- (f) Let V be a vector space over F and $T \in A(V)$. If T is nilpotent, then show that 0 is a characteristic root of T. \mathcal{CPTO}

[14]

(g) Let V be a vector space over F and $S,T \in A(V)$. If S is nilpotent and ST = TS, then show that ST is nilpotent. (h) Show that there does not exist matrices A, B in $M_n(\mathbb{R})$ such that AB - BA = I. (i) Write the symmetric matrix associated to the quadratic form 2xy + 2yz + 2zx. Q-3 (a) Let V be a finite-dimensional vector space over F. Show that V is isomorphic to \widehat{V} . [06] (b) Let U and V be two vector spaces over a field F and $T:U\to V$ be an onto [06] homomorphism. Show that $U/\ker T$ is isomorphic to V. (b) Let F be any field. Show that F^n , the set of n-tuples in F, is a vector space over F[06]with componentwise addition and scalar multiplication. Q-4 (a) Let V be an n-dimensional vector space over F. Show that there is an algebra [06]isomorphism from A(V) onto $M_n(F)$. (b) Let V be a 2-dimensional vector space over $\mathbb R$ with basis $\{v_1,v_2\}$. Let $T\in A(V)$ [06]be defined by $Tv_1 = v_1 + v_2$ and $Tv_2 = v_1 - v_2$. Find the characteristics roots and corresponding characteristics vectors for T. (b) Let V be a finite-dimensional vector space over F and $T \in A(V)$. If T is singular, [06]then show that there exists $S \in A(V)$, $S \neq 0$ such that TS = ST = 0. Q-5 (a) Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent. Prove [06]that the invariants of T are unique. (b) Let V be a finite dimensional vector space over F and $T \in A(V)$. If all the char-[06] acteristic roots of T are in F, then show that there is a basis of V with respect to which the matrix of T is upper triangular. (b) Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be nilpotent linear transformation defined by $T(x_1, x_2, x_3, x_4) =$ [06] $(x_2, x_3, x_4, 0)$, for all $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$. Find the invariants of T and hence find a basis of \mathbb{R}^4 with respect to which the matrix of T has nilpotent canonical form. Q-6 (a) State and prove Cramer's rule. Hence show that for a field F if $A \in M_n(F)$ such [06] that $det(A) \neq 0$, then A is invertible. (b) i. Prove or disprove: If $A \in M_n(\mathbb{R})$ such that $\det(A) = 0$, then A is nilpotent. |02|ii. Let F be a field of characteristic 0 and V be a finite-dimensional vector space [04]over F. Let $S,T \in A(V)$ such that S(ST-TS)=(ST-TS)S. Then show that ST - TS is nilpotent. OR (b) Show that the determinant of a lower triangular matrix is the product of its entries [06]on the main diagonal.