Seat N	o.:	No. of printed pages: 2	
[126_	SARDAR PATEL UNIVERSITED M.Sc. (Mathematics) Semester - I Example Friday, 26th October, 2018 PS01CMTH02, Topology-I		
Time: 10	0:00 a.m. to 01:00 p.m.	Maximum marks: 70	
_	ures to the right indicate full marks of the respective ume standard notations wherever applicable.	questions.	
)-1 Write	the question number and appropriate option numb	er only for each question.	[8]
(a)	$\underline{}$ is not a closed subset of \mathbb{R} .		
	$[0,1]$ (ii) $\mathbb Q$ (iii) $\mathbb N$	(iv) $\{\frac{1}{x}: x > 0\} \cup \{0\}$	
(b) For	a topological space X and $A,B\subset X,$ \neq	- -	
	$\operatorname{bd} A, \operatorname{bd}(X \setminus A)$ (ii) $\overline{X \setminus A}, X \setminus A^{\circ}$ (iii) $\overline{A \cup B}, \overline{A}$	$\overline{A} \cup \overline{B}$ (iv) $\overline{A \cap B}$, $\overline{A} \cap \overline{B}$	
` '	\mathbb{R} is not $\underline{\hspace{1cm}}$	7. (*)1	
` '	compact (ii) complete (iii) T $\mathbb{R} \to \mathbb{R}$ defined by $f(x) = \underline{\hspace{1cm}}, (x \in \mathbb{R})$, is not uniform	- , , -	٠
	$\sin x$ (ii) x^3 (iii) $\sin^2 x + 2$		
` '	the topology on \mathbb{R} , a connected subset must be		
` .		(iv) upper limit	
	$\mathbb{L} \subset \mathbb{R}$ is compact.		
	$\{\pm \frac{1}{n}\} \cup \{0\}$ (ii) $\{7 \pm \frac{7}{n}\} \cup \{0\}$ (iii) $\{-1, 2, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	$-1,1] \setminus \{0\}$ (iv) \mathbb{Q}	
	-	(iv) cofinite	
	space is normal.		
(i)	topological (ii) metric (iii) 7	C_2 (iv) regular	
Q-2 Atter	apt Any Seven of the following:		[14]
	ive an example of a nonempty proper subset of $\mathbb Q$ pen.	which is closed as well as	
(b) S	how that $A \subset (0,1)$ is open in $(0,1)$ if and only if A	is open in \mathbb{R} .	
(c) G	ive a base for the product of finitely many topologic	al spaces.	
٠,,	ive an example of a bounded subset of a metric space the diameter of the set given by you?	which is not closed. What	
(e) S	tate Cantor's intersection theorem		
(f) S	how that a finite set with any topology is compact.		
` '	how that $\mathbb R$ with the discrete topology is not compac	et.	
(0)	befine a T_4 -space and show that a discrete space is T_4		
` ,	how that \mathbb{R} is a T_1 -space.	•	
(7) ~	• •		

17

Q-č	3 (j _.	Define a topological space and a basis for a topology. Show that $\mathscr{T} = \{G \subset \mathbb{R} : G = \mathbb{R} \text{ or } G \cap \mathbb{Q} = \emptyset\}$ is a topology on \mathbb{R} .	[6
	(k)	Define a <i>limit point</i> of a subset of a topological space. Find all limit points of $\mathbb{Z} \subset \mathbb{R}$ in each of the cofinite topology and usual topology.	[6
		OR	
	(k)	Show, on \mathbb{R} , that the intersection of the lower limit topology and the upper limit topology is the usual topology.	[6
Q-4	(l)	Show that projections are continuous and open.	[6
	(m)	For a product space $X = \prod_{i=1}^{n} X_i$, show that X is T_1 if and only if each X_i is T_1 .	[6
		OR	
	(m)	Show that in a metric space, every convergent sequence is Cauchy. Also show that a uniformly continuous function maps a Cauchy sequence to Cauchy sequence.	[6]
Q-5	(n)	Show that \mathbb{R} with cofinite topology is compact.	[6]
	(o)	Let (X, \mathcal{T}) be a topological space and (Y, \mathcal{T}_Y) be its subspace. Show that Y is compact in Y if and only if Y is compact in X.	[6]
		\mathbf{OR}	
	(o)	Show that a closed subset of a compact space is compact.	[6]
Q-6	(p)	Show that a topological space X is T_4 if and only if for every open set $G \subset X$ and a closed set $E \subset G$, there exists an open set $H \subset X$ such that $E \subset H \subset \overline{H} \subset G$.	[6]
	(q)	For $a, b \in \mathbb{R}$ with $a < b$, show that (a, b) is connected.	[6]
		OR	, ,
	(q)	Show that a compact subset of a T_2 -space is closed.	[6]

1

ij

13

-x-(2)