SARDAR PATEL UNIVERSITY M. Sc. (Semester I) Examination

	N	A. Sc. (Semester	I) Examination		^^
	28-10-2016 et: MATHEMATICS	Paper No. PS	801EMTH01 - (Gr	Time: 10.00 To 01.0 aph Theory – I) Total Marks:	
•	Choose the correct opt	ion for each ques	tion:		[8]
(1)	If $K_{1,n} = K_{n+1}$, then				
		n = 2	(c) $n > 2$	(d) none of these	
(2)	A symmetric digraph i (a) Euler (b	s o) connected	(c) regular	(d) balanced	•
(3)		b) n = 1	(c) 1	(d) none of these	
(4)	If G is a simple digrap	h with vertices {	$v_1, v_2,, v_n$ } & e ed	lges, then $\sum_{i=1}^{n} d^{+}(v_i) =$	
		b) e	(c) 2e	$(d) e^2$	÷
(5)	The coefficient c ₄ in c	hromatic polynomb) 1	mial of K ₄ is (c) 4	(d) 4!	
(6)	Z	b) K _{n, n}	(c) P_n	(d) C _n	•
(7)	Let G be a simple gra (a) maximum ⇒ per (b) maximum ⇒ ma	fect	ed vertex. Then a m (c) maximal ⇒ m (d) maximum ⇒	naximum	
(8)	If $G = P_{51}$, then (a) $\alpha(G) > \beta(G)$	(b) $\alpha(G) < \beta(G)$	(c) $\alpha(G) = \beta(G)$	(d) $ \alpha(G)' = \beta(G) $	F.4
2.	Attempt any SEVEN	:			- [1
(a) (b) (c) (d)	Prove or disprove: A Define incidence may Give an example of a	n Euler digraph i trix in a digraph. a spanning in tree	which is also a spa	nning out tree in a digrap	h.
(e) (f)			G) 3.		

Prove: If $S \subset V(G)$ is a vertex cover, then V(G) - S is an independent set, in G.

Prove or disprove: The graph K_{2n} has a perfect matching.

Why P_4 is not isomorphic to $K_{1,3}$?

(g)

(h)

(i)

3.	(a)	Define the following with examples:	[6]
		(i) Asymmetric digraph (ii) Symmetric digraph (iii) Strongly connected digraph	r_1
	(b)	Prove: An arborescence is a tree in which every vertex other than the root has an in-degree exactly one.	[6]
		OR	
	(b)	Obtain De Bruijn cycle for $r = 3$ with all detail.	[6]
4.	(a)	Let G be a connected digraph with n vertices. Prove that rank of $A(G) = n - 1$.	· [6]
	(b)	Prove that for each $n \ge 1$, there is a simple digraph with n vertices $v_1, v_2,, v_n$ such that $d^+(v_i) = i - 1$ and $d^-(v_i) = n - i$ for each $i = 1, 2, n$.	[6]
	(p) .	Define fundamental circuit matrix in a digraph and find it w. r. t. spanning tree $T = \{a, b, d, e\}$ in digraph D below:	[6]
		$\frac{c}{e}$	
•		В	
_			

5.	(a)	Prove: If G is Hamiltonian, then, for each $S \subset V(G)$, $c(G - S) \le S $.	[6]
	(b)	Let G be a k-chromatic graph with n vertices. Prove that $n \le k \alpha(G)$.	[6]
		OR	
	(b)	Find the coefficients c ₂ and c ₃ of Chromatic polynomial of graph K _{1,3} .	[6]
			. •
6.	(a)	Let G be a graph (no isolated vertex) with n vertices. Prove that $\alpha'(G) + \beta'(G) = n$.	[6]
	(b)	State Hall's theorem & show that a k-regular bipartite graph has a perfect matching.	[6]
		OR	
	(b)	Define $\alpha(G)$, $\beta(G)$ and find it with the corresponding sets for $G = K_{n, m}$.	[6]