Note: (i) Notations and terminologies are standard; (ii) Figures to the right indicate marks.

[8] Q.1 Answer the following. 1. The degree of differential equation $x^4y'' - (y'+x)^{\frac{1}{2}} = 0$ is (D) 4 (B) $\frac{1}{2}$ (C) 2 2. The set of ordinary points of $xy'' + xy' + (1 - e^x)y = 0$ is (D) none of these (B) φ 3. $(2\Gamma(\frac{3}{2})) =$ (C) $2\sqrt{\pi}$ (D) none of these (A) $\sqrt{\pi}$ 4. $\int_0^1 (3x^2 - 1)P_2(x)dx =$ (A) 0(B) $\frac{5}{2}$ (C) $\frac{2}{5}$ (D) none of these 5. Which one is not an integrating factor of yzdx + xzdy + xydz? (A) $\frac{1}{xyz}$ (B) $\frac{1}{2}$ (D) $\frac{1}{x^2}$ (C) 1 6. The differential equation obtained from $z = (x-a)^2 + (y-b)^2$ by eliminating a, b, is (C) $p^2 + q^2 = z$ (D) none of these (A) $p^2 + q^2 = 4z$ (B) p + q = 4z7. $F(\alpha, \beta; \gamma; -1)$ converges if (A) $\gamma < \alpha + \beta - 1$ (B) $\gamma < \alpha + \beta + 1$ (C) $\gamma > \alpha + \beta - 1$ (D) none of these 8. $\frac{d}{dx}[F(\alpha,\beta;\gamma;x)]_{x=0}$ equals (D) $\frac{\alpha\beta}{\alpha}$ (C) -1(A) 1

Q.2 Attempt any seven:

[35]

[14]

- (a) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^{2n}$.
- (b) State Frobenius theorem.
- (c) Verify that $y(x) = e^x$ is a solution of xy'' (2x+1)y' + (x+1)y = 0 and hence find the general solution.
- (d) Prove: $\Gamma(x) = (x-1)\Gamma(x-1), x > 1$.
- (e) Show that between any two positive roots of J_1 there is a root of J_0 .
- (f) Find a partial differential equation by eliminating a, b and c from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- (g) Solve: $x^3p + y^3q = z^3$.
- (h) Find $F(1, \frac{1}{2}; \frac{1}{2}; \frac{1}{2})$.
- (i) Solve: $z = px + qy + p^2 + q^2$.

Q.3

(a) Solve:
$$y'' - xy = 0$$
 near 0.

[6]

(b) Solve:
$$2x^2y'' + 3xy' - (1+x)y = 0$$
 near 0.

[6]

(b) Prove or disprove: the function $f:(-1,1)\to\mathbb{R},\ f(x)=\frac{1}{1-x}$ is analytic at 0.

Q.4

(a) Prove:
$$\frac{d}{dx}[x^{-\alpha}J_{\alpha}(x)] = -x^{-\alpha}J_{\alpha+1}(x), \ \alpha \geq 0.$$

(b) State and prove orthogonality of Legendre's polynomials.

[6]

[6]

(b) Let p(x) be a polynomial of degree $n \ge 1$ with

$$\int_{-1}^{1} x^{k} p(x) dx = 0 \quad \text{where} \quad k = 0, 1, 2, ..., n - 1,$$

show that $p(x) = cP_n(x)$ for some constant c, where P_n is a Legendre polynomial.

Q.5

- (a) Find a necessary and sufficient condition that there exists between two functions u(x,y) and v(x,y), a relation F(u,v)=0 not involving x or y explicitly.
- (b) Solve y' x y = 0, y(0) = 1 using Picard's method of successive approximations.

(b) Verify that the differential equation $x(y^2-1)dx + y(x^2-z^2)dy - z(y^2-1)dz = 0$ is integrable and find its primitive.

Q.6

(a) Show that
$$P_n(x) = F\left(-n, n+1; 1; \frac{1-x}{2}\right)$$
.
(b) Solve: $z^2 = pqxy$ using Charpit's method.

[6]

b) Solve:
$$z^2 = pqxy$$
 using Charpit's method.

[6]

(b) Solve: $p^2x + q^2y = z$ using Jacobi's method.