[42]

Sardar Patel University

M. Sc. (First Semester) Examination

Monday, 24th October 2016

	:	Course No. PS01CMTH	104 :	Linear Al	gebra	1 .		
		40.00				um marks:	70	
	Note	(i) In this question paper, F denotes a finand M _n (F) denotes the space of all square (ii) Figures to the right indicate marks.	eld; F	denotes the	field of	f real numbers	. •	
1	Fill u	p the gaps in the following:					F Q T	
••		Let V be a vector space over F and A, B be $\dim(A + B) = \dim(A) + \dim(B)$, if (a) $A = B$ (b) $A \cap B = \{0\}$	e subs	spaces of V. T	hen		[8]	
		(a) $A = B$ (b) $A \cap B = \{0\}$	(c)	A + B = V	(d)	$A \cup B = V$.		
	ii)	Let $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + 3x_2 + 4x_3 = 0\}$						
		(a) 0 (b) 2	(c)	1	(d) _	3		
	iii)	Let V be any vector space over F and S is not true.						
		(a) T is one to one	(b)	S is onto				
		· · · · · · · · · · · · · · · · · · ·	• •	none of these				
	iv)	If $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by $T(x_1, x_2, x_3)$	$=(x_1$	$(x_{1}, x_{1}), (x_{1}, x_{1})$	$(2, X_3) \in$	$\in \mathbb{R}^3$, then the		
		rank of T is (a) 3 (b) 2						
	v)	Define $T: \mathbb{R}^4 \to \mathbb{R}^4$ be nilpotent such that	invai	riants of T are	1, 1, 1	, 1. Then T is		
		(a) I (b) 0	(c)	non zero	(d)	regular	•	
	vi)	Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x_1, x_2) = (-x_2, x_1)$,	(x ₁ , x	$_{2}$,) $\in \mathbb{R}^{2}$. Then	p(x) =	is		
		the minimal polynomial for T.						
		(a) $1 - x^2$ (b) x^2						
	vii)	Let V be a vector space of dimension 5 over	er F a	$nd T \in A(V)$ s	such the	at $rank(T) = 4$.		
		Then $det(T) = \underline{\qquad}$	()	4	<i>(</i> 1)	0		
	v.:::\		(c)	4	(d)	0		
	viii)	A, B \in M _n (R). Then (a) $tr(\lambda A) = n\lambda tr(A)$	(h)	det(A+B) = d	let(Λ)-	⊦det(R)		
		(a) $tr(AA) = tr(A)$ (c) $tr(A + B) = tr(A) + tr(B)$				(det(D)		
,	Ancw	er any SEVEN of the following:	(u)	dei(AA) - Ad	ei(A)		[14]	
۷.		Answer any SEVEN of the following: i) Let $V = \mathbb{R}^2$. Find the dual basis of $v_1 = (2, 1)$, $v_2 = (1, 2) \in V$.						
	ii) Let V be a finite dimensional vector space over F and S, $T \in A(V)$. Show that							
	/	$rank(ST) \leq rank(T)$.						
	iii)	·						
Let $S \in A(V)$ be regular. Show that $S^{-1}TS$ satisfies $p(x)$. iv) Let $\alpha \in F$. Define $T : F^2 \to F^2$ by $T(x_1, x_2) = (\alpha x_2, x_1 + \alpha x_2), (x_1, x_2) \in A(V)$								
						$f(x) \in F^2$. Show		
	,	that T is regular iff $\alpha \neq 0$.						
	v)	Let V be a vector space over F and S, T e	: A(V) be nilpoten	t such	that $ST = TS$.		
	•	Show that $S + T$ is nilpotent.	`					
	vi)							
	vii)	Show that the set $\{A \in M_n(F) : det(A) = 1\}$ is a	grou	o under matrix i	nultipli	cation.		

viii) Let A, B \in M_n(F). Show that tr(AB) = tr(BA).

ix) Find the inertia of the quadratic equation $2x_1x_2 + 2x_1x_3 = 0$.

Define internal direct sum and external direct sum of a vector space. Let V be a [6] 3. vector space over F and $V_1,\,V_2,\ldots,V_k$ be subspaces of V such that V is an internal direct sum of V1, V2,..., Vk. Prove that V is isomorphic to the external direct sum of $V_1, V_2, ..., V_k$. Let V be a vector space over F; U and W be subspaces of V. Show that (U+W)/W is isomorphic to $U/(U \cap W)$. Let V be a vector space over R. Show that V cannot be represented as union [3] of two proper subspaces of V. OR b) Let V be a finite dimensional vector space over F and W be a subspace of V. Show [6] that W is finite dimensional and dim V/W = dim V - dim W. a) Let V be vector space over F and $T \in A(V)$. Show that the characteristic vectors [6] 4. corresponding to distinct characteristic roots of T are linearly independent. Let A be an n-dimensional algebra over F with unit element. Show that each [3] element in A satisfies a polynomial in F[x] of degree $\leq n$. Let V be a finite dimensional vector space over F, T \in A(V) and $\lambda \in$ F. [3] Show that λ is a characteristic root of T iff λ is a root of the minimal polynomial for T. OR b) Let V be a finite dimensional vector space over F and $T \in A(V)$. Show that T is [6] regular iff the constant term of the minimal polynomial for T is nonzero. a) Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent. Show [6] 5. that the invariants of T are unique. b) Let V be a finite dimensional vector space over F and $T \in A(V)$. [6] Let $p(x) = (q_1(x))^{l_1} (q_2(x))^{l_2} ... (q_k(x))^{l_k}$, (where $q_i(x)$, i=1,2,...,k are irreducible polynomials) be a minimal polynomial for T. Let $V_i = \ker (q_i(T))^{l_i}$ i = 1, 2,..., k. Show that each V_i is a non-zero subspace of V which is invariant under T and $V = V_1 \oplus V_2 \oplus ... \oplus V_k$. ORb) Let V be a finite dimensional vector space over F; $T \in A(V)$ and V_1 , V_2 be subspaces of V such that V_1 , V_2 are invariant under T and $V = V_1 \oplus V_2$. Let $T_i = T/V_i$ and $p_i(x) \in F[x]$ be minimal polynomial for T_i , i=1, 2. Show that least common multiple of $p_1(x)$ and $p_2(x)$ is the minimal polynomial for T. Let A, B \in M_n(F). Show that det(AB) = det(A) det(B). [6] Let V be a finite dimensional vector space over F and $T \in A(V)$. [6] Show that $tr(T^k) = 0$ for each k iff T is nilpotent. i) State and prove Cramer's rule. [4] ii) Let A, B \in M_n(R). Show that AB – BA \neq I. [2]