Sardar Patel University,

M.Sc. (Mathematics) External Examination 2016; I-5EM Code:- PS01CMTH03: Subject:- Functions of Several Real Variables;

Date: 19-10-2016, Wednesday; Time- 10.00 am to 1.00 pm; Max. Marks 70 Note: Notations and Terminologies are standard.

Q.1 Choose correct option from given four choices.

[80]

[14]

- (i) Let x = (1, -1, 2) and y = (-1, 1, -2). Then $\langle x, y \rangle =$
 - (a) 6
- (b) -6 ·
- (c) 4
- (d) -4
- (ii) Let $x, y \in \mathbb{R}^n$ be orthogonal vectors. Then $||x+y||^2 =$
 - (a) ||x|| + ||y||
- (b) $(||x|| + ||y||)^2$
- (c) $||x||^2 + ||y||^2$
- (d) ||x|||y||
- (iii) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined as $f(t) = 3t^3$. Then Df(2) =
 - (a) λ_9
- (b) λ_{18}
- (d) λ_{36}
- (iv) Define $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ as $f(x) = 2x_1e^{x_2}$. Then $D_2f(0) =$
 - (a) -1
- (b) 0
- (d) 2
- (v) Let x = (1,1). Define $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ as $f(y) = y_1 + y_2$. Then $D_x f(0) = (1,1)$
 - (a) .0
- (b) 1
- (c) 2
- (d) 3
- (vi) Let $a \in \mathbb{R}^n$ and $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be continuous at a. Then
 - (a) $D_j f(a)$ exists for all $1 \le j \le n$
- (c) Df(a) exists
- (b) $D_x f(a)$ exists for all $x \in \mathbb{R}^n$
- (d) none
- (vii) Let $S \in \mathcal{T}^3(V)$ and $T \in \mathcal{T}^5(V)$. Then $S \otimes T$ belongs to
 - (a) $\mathcal{T}^8(V)$
- (b) $\mathcal{T}^5(V)$
- (c) $\mathcal{T}^3(V)$
- (viii) Let π_1 and π_2 be projection maps on \mathbb{R}^2 . Then $\pi_1 \wedge \pi_2 =$
 - (a) $\pi_1 \otimes \pi_2 \pi_2 \otimes \pi_1$ (b) $\pi_1 \otimes \pi_2 + \pi_2 \otimes \pi_1$ (c) $\pi_1 \otimes \pi_2$
- (d) $\pi_2 \otimes \pi_1$

Q.2 Attempt any seven.

(i) Prove that $||x+y|| \le ||x|| + ||y|| (x, y \in \mathbb{R}^n)$.

- (ii) Let $f, g: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be continuous at a. Prove that f+g is also continuous at a. (iii) Define $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ as $f(x) = x_1 + 3$. Prove that $Df(0) = \pi_1$ using the definition.
- (iv) Let a = (2,1) and $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as $f(x) = x_1x_2$. Find Df(a).
- (v) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at a. Prove that each $f^i: \mathbb{R}^n \to \mathbb{R}$ is differentiable at a.
- (vi) Let $s \in \mathbb{R}$, $a, x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable at a. Prove that $D_{sx}f(a) = sD_xf(a)$.
- (vii) Give example of a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that $D_x f(0)$ exist but Df(a) does not exist.
- (viii) Define an inner product on a vector space V.
- (ix) Let $T \in \mathcal{T}^2(\mathbb{R}^2)$ be defined as $T(x,y) = x_1y_2$. Find Alt(T).

(Continue on page-2)

(PT.O)

(b) Define "k-form" on \mathbb{R}^n . Let $f:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ be differentiable. Then prove that

 $\widetilde{f}_{1*}(d\pi_i) = \sum_{i=1}^n D_j f^i \cdot d\pi_j \quad (1 \le i \le m).$

[6]

[6]

${ m THE} \; { m END}$