Seat No	[8]
Sardar Patel University M.Sc. Semester I Examination 2016 Friday, 21 October 10.00 to 13.00 pm Mathematics: PS01CMTH02 (Topology I) Maximum Marks: 70 Q.1 Write the question number and correct option number only for each question. (a) If \mathscr{B} is a base for a topology \mathscr{T} on X , then (i) $\mathscr{B} \subset \mathscr{T}$ (ii) $\mathscr{B} = \mathscr{T}$ (iii) $\mathscr{T} \subset \mathscr{B}$ (iv) $X \in \mathscr{B}$ (b) topology is the weakest topology on \mathbb{R} . (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (c) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit	[8]
$\begin{array}{c} 2016 \\ \text{Friday, 21 October} \\ 10.00_{\text{A}}^{\text{CO}} 13.00 \text{ pm} \\ \text{Mathematics: PS01CMTH02} \\ \text{(Topology I)} \\ \\ \hline & & & & & & & & & & & & & & & & &$	[8]
Q.1 Write the question number and correct option number only for each question. (a) If \mathcal{B} is a base for a topology \mathcal{F} on X , then (i) $\mathcal{B} \subset \mathcal{F}$ (ii) $\mathcal{B} = \mathcal{F}$ (iii) $\mathcal{F} \subset \mathcal{B}$ (iv) $X \in \mathcal{B}$ (b) topology is the weakest topology on \mathbb{R} . (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (c) \mathbb{R} with topology is compact. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit	[8]
(a) If \mathscr{B} is a base for a topology \mathscr{F} on X , then (i) $\mathscr{B} \subset \mathscr{F}$ (ii) $\mathscr{B} = \mathscr{F}$ (iii) $\mathscr{F} \subset \mathscr{B}$ (iv) $X \in \mathscr{B}$ (b) topology is the weakest topology on \mathbb{R} . (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (c) \mathbb{R} with topology is compact. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit	[8]
(i) $\mathscr{B} \subset \mathscr{T}$ (ii) $\mathscr{B} = \mathscr{T}$ (iii) $\mathscr{T} \subset \mathscr{B}$ (iv) $X \in \mathscr{B}$ (b) topology is the weakest topology on \mathbb{R} . (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (c) \mathbb{R} with topology is compact. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit	
(i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (c) \mathbb{R} with topology is compact. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit	
(c) \mathbb{R} with topology is compact. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit	
(i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit	
 (d) ℝ with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) f: ℝ → ℝ defined by f(x) = x² is discontinuous if ℝ has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit 	
(i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit	
(e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit	
(i) cocountable (ii) usual (iii) indiscrete (iv) lower limit	
(f) Complete metric space is	
(), complete Market opened to	
(i) compact (ii) connected (iii) discrete (iv) of second category	
(g) Projections are	
(i) closed (ii) open (iii) one-one (iv) homeomorphism	
(h) A compact T_2 -space is	
(i) discrete (ii) T_3 (iii) connected (iv) bounded	
 Q.2 Attempt any Seven. (Start a new page.) (a) Prove that {(-n,n): n∈ N} is a base for some topology on ℝ. (b) Find the boundary points of N in ℝ with the usual topology. (c) Show that ℝ with discrete topology is T₁. (d) Show that a finite product of discrete topological spaces is a discrete topological space. (e) State one result ensuring the completeness of [0, 1] with the usual topology. 	[14]

(e) State one result ensuring the completeness of [0, 1] with the usual topology.

(i) Show that a finite subset of $\hat{\mathbb{R}}$ with the usual topology is disconnected.

(g) Define totally bounded metric space and show that \mathbb{R} with usual metric is not totally bounded.

(PTO) [Contd...]

(f) Show that $\{(0,r): r>0\}$ has finite intersection property.

(h) Show that a finite set is compact with every topology on it.

	2 PS01CMTH02	
	S (Start a new page.)	
	State and prove Pasting Lemma.	[6]
(b)	Show that every T_2 -space is T_1 but the converse is not true.	
	OR	[6]
(b)	In \mathbb{R} with the usual topology, find the limit points of (i) \mathbb{Q} , (ii) \mathbb{N} and (iii) $\{1 + \frac{1}{n} : n \in \mathbb{N}\}$.	[6]
Q.4	(Start a new page.)	
<i>(Q)</i>	Let X be a complete metric space and $\{F_n : n \in \mathbb{N}\}$ be a family of closed subsets of X such	[6]
	that $F_{n+1} \subset F_n$ for all $n \in \mathbb{N}$. If diam $(F_n) \to 0$, then show that $\bigcap_{n=1}^{\infty} F_n$ is singleton.	
(ይ)	Define (i) a continuous function, (ii) a uniformly continuous function and prove that a continuous function on a metric space need not be uniformly continuous. OR	[6]
(b)	For topological spaces X_1, X_2, \ldots, X_n , show that X_i is homeomorphic to a subspace of $\prod_{i=1}^n X_i$	[6]
	(Start a new page.)	
((F)	Show that a topological space X is compact if and only if every family of closed subsets of X with FIP has a nonempty intersection.	[6]
(b)	Show that sequentially compact metric space X has Bolzano-Weierstrass Property. OR	[6]
(b)	Show that a compact metric space is totally bounded but the converse is not true.	[6]
2.6	(Start a new page.)	
	Let X be a topological space. Show that X is disconnected if and only if there is a nonempty	[6]
	proper clopen subset of X if and only if there is an continuous function from X onto $\{0,1\}$.	[0]
b) ;	Show that a compact T_2 -space is regular.	[6]
	OR	
(a	Let X be a topological space. Show that X is T_4 if and only if for every open set $V \subset X$ and a closed subset $F \subset V$, there exists an open set U in X such that $F \subset U \subset \overline{U} \subset V$. $A^{\dagger}A^{\dagger}A^{\dagger}A^{\dagger}A$	[6]

