| Seat No | [8] | |--|------| | Sardar Patel University M.Sc. Semester I Examination 2016 Friday, 21 October 10.00 to 13.00 pm Mathematics: PS01CMTH02 (Topology I) Maximum Marks: 70 Q.1 Write the question number and correct option number only for each question. (a) If \mathscr{B} is a base for a topology \mathscr{T} on X , then (i) $\mathscr{B} \subset \mathscr{T}$ (ii) $\mathscr{B} = \mathscr{T}$ (iii) $\mathscr{T} \subset \mathscr{B}$ (iv) $X \in \mathscr{B}$ (b) topology is the weakest topology on \mathbb{R} . (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (c) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit | [8] | | $\begin{array}{c} 2016 \\ \text{Friday, 21 October} \\ 10.00_{\text{A}}^{\text{CO}} 13.00 \text{ pm} \\ \text{Mathematics: PS01CMTH02} \\ \text{(Topology I)} \\ \\ \hline & & & & & & & & & & & & & & & & &$ | [8] | | Q.1 Write the question number and correct option number only for each question. (a) If \mathcal{B} is a base for a topology \mathcal{F} on X , then (i) $\mathcal{B} \subset \mathcal{F}$ (ii) $\mathcal{B} = \mathcal{F}$ (iii) $\mathcal{F} \subset \mathcal{B}$ (iv) $X \in \mathcal{B}$ (b) topology is the weakest topology on \mathbb{R} . (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (c) \mathbb{R} with topology is compact. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit | [8] | | (a) If \mathscr{B} is a base for a topology \mathscr{F} on X , then (i) $\mathscr{B} \subset \mathscr{F}$ (ii) $\mathscr{B} = \mathscr{F}$ (iii) $\mathscr{F} \subset \mathscr{B}$ (iv) $X \in \mathscr{B}$ (b) topology is the weakest topology on \mathbb{R} . (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (c) \mathbb{R} with topology is compact. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit | [8] | | (i) $\mathscr{B} \subset \mathscr{T}$ (ii) $\mathscr{B} = \mathscr{T}$ (iii) $\mathscr{T} \subset \mathscr{B}$ (iv) $X \in \mathscr{B}$ (b) topology is the weakest topology on \mathbb{R} . (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (c) \mathbb{R} with topology is compact. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit | | | (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (c) \mathbb{R} with topology is compact. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit | | | (c) \mathbb{R} with topology is compact. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit | | | (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (d) \mathbb{R} with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit | | | (d) ℝ with topology disconnected. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) f: ℝ → ℝ defined by f(x) = x² is discontinuous if ℝ has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit | | | (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology. (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit | | | (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is discontinuous if \mathbb{R} has topology.
(i) cocountable (ii) usual (iii) indiscrete (iv) lower limit | | | (i) cocountable (ii) usual (iii) indiscrete (iv) lower limit | | | | | | (f) Complete metric space is | | | (), complete Market opened to | | | (i) compact (ii) connected (iii) discrete (iv) of second category | | | (g) Projections are | | | (i) closed (ii) open (iii) one-one (iv) homeomorphism | | | (h) A compact T_2 -space is | | | (i) discrete (ii) T_3 (iii) connected (iv) bounded | | | Q.2 Attempt any Seven. (Start a new page.) (a) Prove that {(-n,n): n∈ N} is a base for some topology on ℝ. (b) Find the boundary points of N in ℝ with the usual topology. (c) Show that ℝ with discrete topology is T₁. (d) Show that a finite product of discrete topological spaces is a discrete topological space. (e) State one result ensuring the completeness of [0, 1] with the usual topology. | [14] | (e) State one result ensuring the completeness of [0, 1] with the usual topology. (i) Show that a finite subset of $\hat{\mathbb{R}}$ with the usual topology is disconnected. (g) Define totally bounded metric space and show that \mathbb{R} with usual metric is not totally bounded. (PTO) [Contd...] (f) Show that $\{(0,r): r>0\}$ has finite intersection property. (h) Show that a finite set is compact with every topology on it. | | 2
PS01CMTH02 | | |---------------|---|-----| | | S (Start a new page.) | | | | State and prove Pasting Lemma. | [6] | | (b) | Show that every T_2 -space is T_1 but the converse is not true. | | | | OR | [6] | | (b) | In \mathbb{R} with the usual topology, find the limit points of (i) \mathbb{Q} , (ii) \mathbb{N} and (iii) $\{1 + \frac{1}{n} : n \in \mathbb{N}\}$. | [6] | | Q.4 | (Start a new page.) | | | <i>(Q)</i> | Let X be a complete metric space and $\{F_n : n \in \mathbb{N}\}$ be a family of closed subsets of X such | [6] | | | that $F_{n+1} \subset F_n$ for all $n \in \mathbb{N}$. If diam $(F_n) \to 0$, then show that $\bigcap_{n=1}^{\infty} F_n$ is singleton. | | | (ይ) | Define (i) a continuous function, (ii) a uniformly continuous function and prove that a continuous function on a metric space need not be uniformly continuous. OR | [6] | | (b) | For topological spaces X_1, X_2, \ldots, X_n , show that X_i is homeomorphic to a subspace of $\prod_{i=1}^n X_i$ | [6] | | | | | | | (Start a new page.) | | | ((F) | Show that a topological space X is compact if and only if every family of closed subsets of X with FIP has a nonempty intersection. | [6] | | (b) | Show that sequentially compact metric space X has Bolzano-Weierstrass Property. OR | [6] | | (b) | Show that a compact metric space is totally bounded but the converse is not true. | [6] | | 2.6 | (Start a new page.) | | | | Let X be a topological space. Show that X is disconnected if and only if there is a nonempty | [6] | | | proper clopen subset of X if and only if there is an continuous function from X onto $\{0,1\}$. | [0] | | b) ; | Show that a compact T_2 -space is regular. | [6] | | | OR | | | (a | Let X be a topological space. Show that X is T_4 if and only if for every open set $V \subset X$ and a closed subset $F \subset V$, there exists an open set U in X such that $F \subset U \subset \overline{U} \subset V$. $A^{\dagger}A^{\dagger}A^{\dagger}A^{\dagger}A$ | [6] | | | | |