(26) Seat NO: _			No of printed pages: 2	
(26)	Sardar Patel University Mathematics M.Sc. Semester I Monday, 17 October 2016 10.00 a.m. to 1.00 p.m. PS01CMTH01 - Complex Analysis I		** *.	
	1 DOTONIA 120		Maximum Marks: 70	
Q.1 Fill in the blanks. (1) Suppose C is a post the value of $\frac{1}{2\pi i} \int_C$	itively oriented sim $\frac{dz}{z^2}$ equals	ple closed contour an	d 0 is interior to C . Then	[8]
(a) 0	(b) 1	(c) 2	(d) None of these	
(2) Let C be the posi-	tively oriented circ	le $ z = 1$. Then the	value of $\int_C e^{1/z} dz$ equals	
(a) 0	(b) 1	(c) $2\pi i$	(d) None of these	
	the of $ \sin z $ in the	e rectangular region ($0 \le x \le \pi$, $0 \le y \le 1$ is	
(a) $(\frac{\pi}{2}, 1)$	(b) $(\pi, 1)$	(c) (0,1)	(d) None of these	·
	rmonic on a domair	n D . Then the value ϵ	of $\frac{\partial^2 u}{\partial z \partial \overline{z}} = \underline{\hspace{1cm}}$	á
(a) 1	(b) 0	(c) -1	(d) None of these	
,	unction at a remov	able singularity is	_	
(a) 0	(b) 1	(c) 2π <i>i</i>	(d) None of these	
(6) Suppose z is either	er real or purely im	naginary. Then	. 	
(a) $z^2 = \overline{z}$	(b) $(\overline{z})^2 = z$	(c) $(\overline{z})^2 = z^2$	(d) None of these	
(7) The equation $ z $	-1 = z+i determined the determined $ z+i $ determined $ z+i $	mines a		
(a) circle	(b) ellipse	(c) pair of lines	(d) none of these	
(8) The value of $\int_{ z =}$	$=2 \frac{\cosh z}{z^4} dz$ is			
(a) <i>i</i> π	(b) $2i\pi$	(c) $\frac{1}{3}i\pi$	(d) none of these	
Q.2 Attempt any Se (a) Find the value o	$f \sqrt{i} + \sqrt{-i}$			[14]
(a) Find the value of (b) Deduce Cauchy- (c) Prove Gauss Me	Goursat Theorem	from Cauchy Integral	Formula	

(e) (f) (g) (h)	If $\lim_{z\to 0} \frac{1}{f(1/z)} = 0$, then show that $\lim_{z\to \infty} f(z) = \infty$. Find the inverse of a bilinear transformation. Find the value of $\int_{ z =1} ze^z dz$. Show that limit of a function is unique. If u is a harmonic conjugate of itself, then show that u is constant. Show that 0 is a pole of order 3 of $\frac{\sinh z}{z^4}$.	
Q.3	Find out the condition precisely for which $\sin(i\overline{z}) = \overline{\sin(iz)}$.	
(b)	Find out the complex number $(1 + \sin \alpha + i \cos \alpha)^n / (1 + \sin \alpha - i \cos \alpha)^n$.	[6] [6]
/1 X	OR	£-3
(b)	Find out the $n^{\rm th}$ roots of unity and hence find out the $4^{\rm th}$ roots and give their geometrical configuration.	[6]
Q.4	YVD	
(c)	What are the necessary conditions for the existence of the derivative of a function at a point? Are they sufficient? Justify your answer.	[6]
(d)	Let f be analytic on a domain D. If $f'(z) = 0$ for all $z \in D$, then show that f is a constant map.	[6]
	OR	
(d)	Suppose $f(z) = u + iv$ on a domain D . Show that f is continuous on D if and only if u and v are continuous on D .	[6]
Q. 5		
(e)	State and prove Cauchy's Integral Formula and explain its meaning.	[6]
(f)	Deduce Fundamental Theorem of Algebra from a well known theorem. State the result used here.	[6]
	OR	
(f)	Let f be an analytic on a domain $ z-z_0 <\epsilon$. If $ f(z) \leq f(z_0) $ for all z in the domain, then show that f is constant.	[6]
Q.6		
(g)	State and prove Taylor's Theorem.	[6]
(h)	State and prove Cauchy's Residue Theorem. Can Cauchy-Goursat Theorem be deduced from this result? Justify your answer.	[6]
	OR	
(h) ;	State Laurent's Theorem and find out the Laurent series of $\frac{1}{(z-1)(2-z)}$ in $1 < z < 2$ and $ z > 2$.	[6]
	նննենննեն	