SEAT NO			No. of printed pages 2	
[78]	Sardar Pat M.Sc.(Sem-I), PS01EM Monday, 1 st April, 2019			
Note: (i) Notations	and terminologies are st	andard; (ii) Figures	to the right indicate marks.	
Q.1 Choose the most	appropriate option in tl	ne following question	S.	[08]
1. For $G = C_7$, if I	D = diam(G) and $R = r$	rad(G), then		
(a) $D = R$	(b) $D = 2R$	(c) $D = 3R$	(d) None of these	
2. If G is complete	symmetric digraph wit	h n vertices, then $ E $	G(G) =	
(a) n	(b) $n(n-1)$	(c) n^2	(d) $\frac{n(n-1)}{2}$	
3. Let T be a spar	ning out-tree with root	R. Then		
(a) $d^+(R) > 0$	(b) $d^+(R) = 0$	(c) $d^+(R) < 0$	(d) None of these	
4. If G is a simple	digraph with vertices {	$v_1, v_2, v_3, \ldots, v_n$ & e	$arepsilon$ edges, then $\sum\limits_{i=1}^n d^+(v_i) =$	·
(a) <i>ne</i>	(b) e^2	(c) 2e	(d) <i>e</i>	
5. The coefficient	c_5 in Chromatic polynom	mial of K_5 is		
(a) 0	(b) 1	(c) 5	(d) 5!	
6. Which of the fo	ollowing graph is not Ha	miltonian?		
(a) K_n	(b) P_n	(c) C_n	(d) None of these	
7. If $G = P_{2021}$, th	nen	•		
(a) $\alpha(G) = \beta(G)$ (b) $\alpha'(G) = \beta(G)$		(c) $\alpha'(G) = \beta(G)$ (d) None of the		
8. If $G = C_7$ and	M is a maximal matching	ng in G , then $ M =$		
(a) 2	(b) 3	(c) 4	(d) None of these	

Q.2 Attempt any seven.

[14]

- 1. Define Euler graph.
- 2. Write any four properties of tree.
- 3. Define spanning in-tree.
- 4. Define Incidence matrix of digraph.
- 5. Find Chromatic number of C_7 .
- 6. What is four color problem?
- 7. If G is a tree, then show that $\chi(G) = 2$.
- 8. Write Hall's matching condition.

9. Define perfect matching. Q.3[06](a) Discuss in detail the Teleprinter problem for r = 4. (b) Define the following with an example (1) Eccentricity of vertex, (2) Center of graph and [06] (3) Radius of graph. OR(b) Define the following with an example (1) Balance digraph, (2) Regular digraph and (3) [06] Euler digraph. Q.4[06](a) Find fundamental circuit matrix of the following diagraph. (b) Show that the determinant of every square sub matrix of the incidence matrix A of a [06] digraph is 1, -1 or 0. OR (b) Let X denote the adjacency matrix of digraph G = (V, E). Show that $(i, j)^{th}$ entry of [06] $X^r(r \in \mathbb{R})$ is the total number of directed edge sequence from v_i to v_j of length r. Q.5(a) Let G be a connected graph. Then show that G is 2-chromatic if and only if G does not contain a cycle of odd length. [06](b) Find Chromatic polynomial of $K_{2,2}$. OR (b) Suppose G is Hamiltonian graph. Show that for any non-empty $S \subset V(G), c(G-S) \leq |S|$. [06]Q.6[06](a) State and prove Min-max Theorem. [06](b) Let $G = K_{3,4}$. Then find a (1) minimal vertex cover of G and $\beta(G)$, (2) minimal edge cover of G and $\beta'(G)$ and (3) maximal matching in G and $\alpha'(G)$

OR

(b) For k > 0, show that every k- regular bipartite graph has a perfect matching. [06]