SARDAR PATEL UNIVERSITY

M.Sc. (Semester-I) Examination March-April-2019 Monday 01/04/2019

Time: 10:00 AM to 01:00 PM

Subject: Mathematics Course No.PS01EMTH02 (Mathematical Classical Mechanics)

Note: (1) All questions (including multiple choice questions) are to be answered in the answer book only. (2) Numbers to the right indicate full marks of the respective question.		
	Choose most appropriate answer from the options given.	(80)
=		
(1)	For a conservative system is conserved (a) total energy (b) total angular momentum	
	(c) total linear momentum (d) nothing	
(2)	For the motion of a particle on a cylinder constraints are	
	(a) holonomic and rheonomic (b) non-holonomic and rheonomic	
	(c) holonomic and scleronomic (d) non-holonomic and scleronomic	
(3)	Degrees of freedom for a particle moving in the space is	
	(a) 1 (b) 3 (c) 2 (d) 6	
(4)	Which one of the following is correct?	
	(a) Lagrangian is unique (b) Potential energy is unique.	
	(c) Hamiltonian is unique. (d) None of these.	
(5)	The condition for extremum of $\int_{x_1}^{x_2} f(y, \dot{y}, x) dx$ is	
	(a) f is constant (b) $\frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) - \frac{\partial f}{\partial y} = 0$	
	(c) $\frac{d}{dx} \left(\frac{\partial f}{\partial \dot{y}} \right) - \frac{\partial f}{\partial y} = 0$ (d) $\frac{d}{dy} \left(\frac{\partial f}{\partial x} \right) - \frac{\partial f}{\partial \dot{y}} = 0$	
(6)	ax (oy) by	
(0)	If $\frac{\partial H}{\partial t} = 0$ then	
	(a) Lagrangian is conserved (b) Hamiltonian is conserved	
	(c) all momenta are conserved (d) nothing is conserved	
.(7)	Pick up the incorrect statement:	
	(a) Determinant of a symplectic matrix is greater than one	
	(b) Identity matrix is symplectic.	
	(c) Product of two symplectic matrices is symplectic.	
	(d) A symplectic matrix is non-singular.	
(8)	For generalized coordinates q_1 and q_2 , $[q_1, q_2] = $ (a) 0 (b) 1 (c) q_1q_2 (d) -1	
	(a) 0 (b) 1 (c) q_1q_2 (d) -1	(1
Q-2	Answer any Seven.	(14
(1)	State constraints for the motion of a particle on an ellipse.	
(2)	State Lagrange's equations of motion in case of presence of a frictional form.	
(3)	State condition for extremum of the action integral	
(4)	What is the curve for a brachistochrone?	
(5)	State Hamilton's modified principle.	
	What is a Legendre transformation?	
(6)	State transformation equations for a generating function of type $F_2 = q_i P_i$.	
(7)	State Jacobi's identity for Poisson brackets.	
(8)	Show that Poisson brackets are linear in first argument	
(9)	Show that Poisson brackets are filed in this talgament.	CPA

- Q-3

 (a) State D' Alembert's principle and derive Lagrange's equations from it.
- (06)
- (b) Explain the meaning of constraints. Explain the meaning of a non-holonomic constraint giving an example.
- (06)

(06)

OR

(b) Giving all details obtain Lagrangian for a simple pendulum.

Q-4

- (a) Derive Euler-Lagrange equations in the form $\frac{\partial f}{\partial y_i} \frac{d}{dx} \left(\frac{\partial f}{\partial \dot{y}_i} \right) = 0$.
- (b) Using calculus of variations obtain the curve of the minimum surface area (06) of revolution about y-axis.

OR

(b) Discuss conservation of linear momentum using Lagrangian formalism.

Q-5

(a) Discuss principle of least action.

(06)

(06)

(b) Lagrangian for a system is given by $L = \frac{m}{2}(\dot{r}^2 + r^2\dot{\theta}^2) - \frac{k}{r}$. Obtain Hamilton's equations of motion.

OR

(b) Discuss Routhian procedure giving a suitable example.

0-6

- (a) Define a canonical transformation. Derive symplectic condition for canonical transformation. (06)
- (b) Let u(q, p, t) and v(q, p, t) be constants of motion. Show that [u, v] is also (06) a constant of motion.

OR

(b) Show that Poisson brackets are invariant under a canonical transformation.
