Seat No			
[108]			No. of printed pages: 2
	Sardar Pate	el University	
M.Sc	- •	emester - I Exam 7 th March, 2019 Linear Algebra	ination
Time: 10:00 a.m. to	-	228002	Maximum marks: 70
-	ne right indicate marl al/standard notations		
Q-1 Write the most appr	opriate option only	for each of the follo	wing question.
1. Let V be a vector	space over F such that	at $\dim(\operatorname{Hom}(V,F))$ =	$= 9. \text{ Then } \dim V = \underline{\qquad}.$
(a) 3	(b) 9	(c) 27	(d) 81
2. Let $W = \{(x, y, z)\}$	$0 \in \mathbb{R}^3 \mid x - y - z = 0$	$\}$. Then dim $W = _$	
(a) 0	(b) 1	(c) 2	(d) 3
3. Let V be a finite- Then is not		pace and $S, T \in A($	V) be such that $ST = I$.
(a) T is one-one	(b) S is regular	(c) S is onto	(d) none of these
4. Let V be a vector	space over F with di	m(A(V)) = 4. Then	$\dim V = \underline{\qquad}$
(a) 16	(b) 8	(c) 4	(d) 2
5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ by	be defined by $T(x,y,z)$	(z) = (0, 0, z). Then if	nvariants of T are
(a) $1, 1, 1$		(c) 2, 1	(d) none of these
6. Let V be a vector	space, $S \in A(V)$ be a	such that S is nilpot	tent. Then $S-I$ is
			(d) zero map
7. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ l	be defined by $T(x, y, z)$	(z) = (0, y, 0), x, y, z	$\in \mathbb{R}$. Then $\operatorname{tr}(T) = \underline{\hspace{1cm}}$.
(a) 0	(b) 1	(c) 2	(d) 3
8. Let $A \in M_n(\mathbb{R})$ w	ith $det(A) = 0$. Then	A is a matrix	. .
(a) diagonal	(b) regular	(c) singular	(d) nilpotent

Q-2 Attempt any seven of the following.

[14]

- (a) Verify if the set $\{(1,2,3),(1,1,0),(0,1,3)\}$ is linearly independent over \mathbb{R} .
- (b) Let $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$. Is W a subspace of \mathbb{R}^3 over \mathbb{R} ? Justify.
- (c) Let V be a vector space over F and $T \in A(V)$. If $\lambda \in F$ is a characteristic root of T, then show that $T \lambda I$ is singular
- (d) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (x y, y z, z x). Find matrix of T.
- (e) Give an example of a nilpotent linear transformation with index of nilpotence 4.
- (f) Write the Jordan matrix of a linear transformation having both characteristic polynomial and minimal polynomial as x^3 .
- (g) Let F be a field and $A, B \in M_n(F)$. Show that tr(A + B) = tr(A) + tr(B).
- (h) Show by giving an example that for $A, B \in M_3(\mathbb{R})$, $\det(A+B) \neq \det(A) + \det(B)$.
- (i) Write the symmetric matrix associated to the following quadratic form:

$$x_1^2 + x_2^2 - x_3^2 - x_4^2 + 2x_1x_2 - 10x_1x_4 + 4x_3x_4.$$

- Q-3 (a) Let U and V be two vector spaces over a field F and $T:U\to V$ be an onto [06] homomorphism. Show that $U/\ker T$ is isomorphic to V.
 - (b) Let V be a vector space and $\{v_1, v_2, \ldots, v_n\}$ be a basis of V. Let $\{u_1, u_2, \ldots, u_m\}$ be a linearly independent set of V. Then show that $m \leq n$.

OR

- (b) Let V be a finite-dimensional vector space over F and W be a subspace of V. Show that $\dim W^0 = \dim V \dim W$, where W^0 is the annihilator of W.
- Q-4 (a) Let V be an n-dimensional vector space over a field F. Show that A(V) and $M_n(F)$ [06] are isomorphic as algebras.
 - (b) Let V be a vector space over F and $T \in A(V)$. If $\lambda_1, \lambda_2, \ldots, \lambda_k \in F$ are distinct characteristic roots of T and v_1, v_2, \ldots, v_k are characteristic vectors corresponding to $\lambda_1, \lambda_2, \ldots, \lambda_k$ respectively, then show that v_1, v_2, \ldots, v_k are linearly independent.

\mathbf{OR}

- (b) Let V be a vector space over F and $T \in A(V)$. Show that T is regular if and only if the constant term of the minimal polynomial for T is non-zero.
- Q-5 (a) Let V be a finite dimensional vector space over F and $T \in A(V)$. If all the characteristic roots of T are in F, then show that there is a basis of V with respect to which the matrix of T is upper triangular.
 - (b) Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent. Prove that the invariants of T are unique.

OR

- (b) Let V be a finite dimensional vector space over F, $T \in A(V)$, and V_1 and V_2 [06] be subspaces of V invariant under T such that $V = V_1 \oplus V_2$. Let $T_1 = T|_{V_1}$ and $T_2 = T|_{V_2}$. If minimal polynomials for T_1 and T_2 over F are $p_1(x)$ and $p_2(x)$ respectively, then show that the minimal polynomial of T over F is the least common multiple of $p_1(x)$ and $p_2(x)$.
- Q-6 (a) For $A, B \in M_n(F)$, show that $\det(AB) = \det(A) \det(B)$. [06]
 - (b) Let F be a field of characteristic 0, V be a vector space over F and $T \in A(V)$. If $\operatorname{tr}(T^i) = 0$ for all $i \geq 1$ then show that T is nilpotent.

\mathbf{OR}

- (c) i. Prove or disprove: For $A, B \in M_n(\mathbb{R})$, $\operatorname{tr}(A) = \operatorname{tr}(A^{-1})$. [02] ii. State and prove Cramer's rule. [04]
 - ____X