Co C

Seat No. ____ No. of printed pages: 2 [28] SARDAR PATEL UNIVERSITY M.Sc. (Mathematics) Semester - I Examination Friday, 22nd March, 2019 PS01CMTH22, Topology - I Maximum marks: 70 Time: 10:00 a.m. to 01:00 p.m. Note: (1) Figures to the right indicate marks of the respective question. (2) Assume usual/standard notations wherever applicable. [08]Q-1 Choose the most appropriate option for each of the following questions. 1. A function on _____ space is continuous. (d) a metric (c) a cofinite (b) a discrete (a) an indiscrete 2. Boundary of $\mathbb Q$ is _____ in usual topology of $\mathbb R$. (d) Ø (b) $\mathbb{R} \setminus \mathbb{Q}$ 3. Homeomorphic image of a T_2 space is ___ (d) not T_2 (c) closed (b) compact 4. Projections are _____ map. (d) bounded (c) closed (b) constant (a) open 5. Cardinality of a non-empty connected subset of $\mathbb Q$ is _ (d) infinite (c) > 1(b) exactly 1 6. The open interval (0,1) is compact in _____ topology. (d) discrete (c) cofinite (b) usual (a) cocountable 7. Every metric space need not be _____ (d) separable (c) normal (b) T_4 (a) T_2 8. A compact _____ space is normal. (d) none of these (c) bounded (b) T_1 [14]Q-2 Attempt any seven of the following. (a) Prove that $\{(a,b) \mid a,b \in \mathbb{R}\}$ is a base for some topology on \mathbb{R} . (b) Let X be a topological space and $A \subset X$. Prove that if A is closed, then $A = \overline{A}$. (c) Prove or disprove: $A^{\circ} \cup B^{\circ} = (A \cup B)^{\circ}$. (d) Show that projections are continuous. (e) Show that $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 1 is a homeomorphism. (f) Prove that a singleton set is connected. (g) Define a separable topological space and give an example of it. (h) Define a normal topological space.

(P.TO)

(i) State Urysohn's lemma.

Q-3 (a) Let X be a topological space. Prove that arbitrary intersection and finite union [06]of closed sets is closed. (b) Let X be a Hausdorff space. Prove that a sequence $\{x_n\}$ in X can converge to [06]at most one point in X. OR(b) Prove that a topological space X is T_1 if and only if every singleton subset of X[06]is closed in X. Q-4 (a) Let X and Y be two topological spaces, $f: X \to Y$ be a function and $A, B \subset X$ [06] be two open sets such that $A \cup B = X$. If $f_{|A}$, $f_{|B}$ are continuous, then prove that f is continuous. [06](b) Prove that homeomorphic image of a T_1 space is T_1 . (b) Let X, Y be topological spaces and $f: X \to Y$ be a continuous function. Prove [06] that for each $x \in X$ and for each neighbourhood V of f(x), there is a neighbourhood U of x such that $f(U) \subset V$. [06]Q-5 (a) Prove that (a, b), $a, b \in \mathbb{R}$ is connected. (b) Let X be a compact topological space. If Y is a closed subspace of X, then prove [06] that Y is compact. OR (b) Let X be a topological space. Prove that X is compact if and only if every [06]family of closed subsets of X with finite intersection property has non-empty intersection. [06]Q-6 (a) State and prove Cantor's intersection theorem. (b) Prove that a topological space X is T_4 if and only if for every open set $G \subset X$ and [06]a closed set $E \subset G$, there exists an open set $H \subset X$ such that $E \subset H \subset \overline{H} \subset G$. OR [06] (b) State and prove Baire's category theorem for complete metric spaces.