No of printed pages: 2

Sardar Patel University

M.Sc. (Sem-I), PS01CMTH05, Methods of Differential Equations; Friday, 29th March, 2019; 10.00 a.m. to 01.00 p.m.

Maximum Marks: 70

Note: (i) Notations and terminologies are standard; (ii) Figures to the right indicate marks.

	,		· · · · · · · · · · · · · · · · · · ·	saros to the right marcade marks.	
Q.1	Answer the following	ng.			[8]
1.	The degree of a differential equation $y'' - (y')^3 = y^3$ is				["]
	(A) 0	(B) 3	(C) 2	(D) 1	
2.	(A) 0 (B) 3 (C) 2 (D) 1 The set of singular points of $xy'' - (\cos x - 1)y' + xy = 0$ is				
	$(A) \{0\}$	(B) φ	(C) $\{1\}$	(D) none of these	
3.					
	(A) $2\sqrt{\pi}$	(B) $-2\sqrt{\pi}$	(C) $\sqrt{\pi}$	(D) none of these	
4.	$\int_{-1}^{1} x P_2(x) dx =$				
	(A) $\frac{1}{2}$	(B) $\frac{1}{4}$	(C) $\frac{1}{15}$	(D) none of these	
5.	Which of the following is an integrating factor of $xdx - ydy$?				
	(A) $\frac{1}{u}$	(B) $\frac{1}{x}$	(C) $\frac{1}{n^2}$	(D) none of these	
6.	The differential equation obtained from $az + b = a^2x + y$ by eliminating a and b, is				
	$(A) p^2q = 0$	(B) $p = q$	(C) $pq = 1$	(D) none of these	
7.	$F'(\frac{1}{2}, \frac{1}{2}; \frac{1}{2}; \frac{1}{2}) =$				
	$(A) \frac{1}{\sqrt{2}}$	(B) $\sqrt{2}$	(C) 2	(D) none of these	
8.	The radius of convergence of Gauss's hypergeometric series is				
-	(A) :0·	(B) 1	(C) 2	(D) $\frac{1}{2}$	
\cap 2	Attornat any acres		• •	· / Z	fa a'
	Attempt any seven: Find the radius of convergence of $\sum_{n=1}^{\infty} n! m^{2n}$				[14]
	Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^{2n}$. Define analytic function.				
, ,	v ·				
	Show that between any two positive roots of J_3 there is a root of J_2 . Show that $\Gamma(x+1) = x\Gamma(x), x > 0$.				
	Show that $P_n(-x) = (-1)^n P_n(x), \ n \in \mathbb{N} \cup \{0\}.$				
	State Picard's theorem.				
(g)	Find a partial differential equation by eliminating α and β from $z = \alpha x + \beta y$.				
(h)	Find $F(1,1;2;x)$.				
	State Gauss's formu	ıla.	•	·	

(P.FO)

Q.3

(a) Solve: y'' - xy = 0 near 0.

[6]

(b) Classify singularities: $x(x-1)^2(x+2)y'' + x^2(x-1)y' + (x+2)y = 0$

[6]

(b) Find series solution of 3xy'' + 2y' + y = 0 near 0.

Q.4

(a) State and prove Rodrigue's formula.

(b) Prove: $\frac{d}{dx}[x^{-\alpha}J_{\alpha}(x)] = -x^{-\alpha}J_{\alpha+1}(x).$

[6]

(b) Show that $x^2 = \sum_{n=1}^{\infty} \frac{2}{\lambda_n J_3(\lambda_n)} J_2(\lambda_n x)$, $x \in (0,1)$, where $\{\lambda_n\}$ is a sequence of positive

Q.5

(a) Solve y' = y, y(0) = 1 using Picard's method of successive approximations.

[6] [6]

(b) Find a necessary and sufficient condition that there exists between two functions u(x,y) and v(x,y), a relation F(u,v)=0 not involving x or y explicitly.

(b) Verify that the differential equation $(y^2 + yz)dx + (z^2 + zx)dy + (y^2 - xy)dz = 0$ is integrable and find its primitive.

Q.6

(a) Show that $P_n(x) = F\left(-n, n+1; 1; \frac{1-x}{2}\right)$. (b) Solve: $z^2 = pqxy$ using Charpit's method.

OR

(b) Explain Jacobi's method.