Sardar Patel University, Department of Mathematics M.Sc. (Mathematics) External Examination 2019;

Code:- PS01CMTH03: Subject:- Functions of Several Real Variables;
Date: 25-03-2019, Monday; Time- 10.00 am to 01.00 pm; Max. Marks 70
Note: Notations and Terminologies are standard.

	and reminiologies are standard.				
Q.1 (i)	Q.1 Choose correct option from given four choices. (i) Let $x = (\sqrt{2}, 1, e)$ and $y = (\sqrt{2}, 2, e)$. Then $ x - y =$				
	(a) 1	(b) 2	(c) 3	(d) none	
(ii)	Let $x, y \in \mathbb{R}^n$. Then	$\langle x,y\rangle \leq$		(a) none	
		(b) $ x y $	(c) $ x ^2 y ^2$	(d) $ x ^3 y ^3$	
(iii)	Let $x, y \in \mathbb{R}^n$ be orth				
	(a) 1	(b) 2 .	(c) 3	(d) 4	
(iv)	Let $a \in \mathbb{R}^n$ and $f : \mathbb{R}^n$	$a \longrightarrow \mathbb{R}$ such that $D_x f$	(a) exists for all $x \in \mathbb{R}^n$. Then	
(a) f is continuous at a (c) $D_j f(a)$ exists for all $1 \le a$ (d) none					
(v)	(v) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ such that $D_j f(a)$ exists for all $1 \le j \le n$. Then f is at a .				
	(a) Direc Diff.	(b) Cont. Diff.	() 115	(d) None	
(vi) Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined as $f(x) = \sqrt{ x_1 x_2 }$. Then					
	(a) f is continuous(b) f is continuous or		(c) f is differentiable(d) f is differentiable	Only at origin	
(vii)	Let S and T be k -tens	ors on V . Then	. , ,	only at origin	
	(a) $S \otimes T = T \otimes S$ (b) $S + T = T + S$	· .	(c) $S-T=T-S$ (d) None of these		
viii) <i>'</i>	The dimension of $\mathcal{T}^2(\mathbb{R}$	$\mathbb{R}^4)$ is			
	(a) 2	(b) 4	(c) 8	(d) 16	
 Q.2 Attempt any seven. (i) Let x, y ∈ Rⁿ be linearly dependent. Prove that ⟨x, y⟩ = x y . (ii) Let f, g: Rⁿ → R be differentiable. Prove that f + g is differentiable. (iii) Give an example of a function which is continuous but not differentiable at a point a. (iv) Define f: R² → R as f(x) = x₁x₂ . Prove that Df(0) exists. (v) Define f: R² → R as f(x) = x₂e^{x₁}. Find Df(0). (vi) Let A ⊂ Rⁿ be open, a ∈ A, and f: A → R. If f has maximum value at the point a and D_if(a) exists, then show that D_if(a) = 0. (vii) Is it true that if partial derivatives exist, then directional derivatives also exist? Justify. (viii) Is it true that S ⊗ T = T ⊗ S? Justify your answer. (vix) Let f: Rⁿ → R be differentiable. If df(p)(v_p) = Df(p)(v) (p, v ∈ Rⁿ), then prove that df(p) is a linear functional on Rⁿ_p for each p ∈ Rⁿ. 					[14]
	÷.			entinue on Page-2)	

(P.T.O.)

Q.3	2
 (a) Let x, y ∈ ℝⁿ. Then prove that < x, y > = x y iff x and y are dependent. (b) Let A ⊂ ℝⁿ be closed, f : A → ℝ be a bounded function, and ε > 0. Then prove the set B = {x ∈ A : o(f:x) > ε} is closed in ℝⁿ 	[6] at the
set $B = \{x \in A : o(f;x) \ge \varepsilon\}$ is closed in \mathbb{R}^n .	[6]
OR	
(b) Define norm preserving and inner product preserving linear map. Prove that both definitions are equivalent.	
Q.4	[6]
(a) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $a \in \mathbb{R}^n$. Define the derivation of f at a . If f is differentiable then prove that there exists unique linear transformation $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ such that	at a, [6]
$\lim_{h \to 0} \frac{\ f(a+h) - f(a) - \lambda(h)\ }{\ h\ } = 0.$. [0]
(b) State and prove the chain rule.	_
OR	[6]
(b) Find the derivation of $f(x) = (x_1 x_2, x_1 + x_2^2)$ at (2.3).	[6]
₩ .0	[6]
(a) Let $a = (\pi, \pi)$ and $f(x) = (x_1 \cos x_2, x_1 - x_2)$ $(x \in \mathbb{R}^2)$. First find the Jacobian matrix $f'(a)$ and then find $Df(a)$.	atrix
(b) Prove that continuously differentiable function is differentiable.	[6]
	[6]
(b) Give an example of the state of the stat	f_1
(b) Give an example of a function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ such that $D_j f(0)$ exists for all $j = 1, 2$ by is not continuous at 0.	ant f
is not continuous at 0. Q.6	[6]
	(*)
 (a) Define Alt(T). If Alt(S) = 0, then prove that Alt(S⊗T) = 0 for any tensor T. (b) Define the wedge product. Prove that it is associative but not commutative. 	[6]
OR	[6]
(b) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentially $T \to \widetilde{T}$	
(b) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable. Let $\widetilde{f}_{k*}: \Delta_{kF}(\mathbb{R}^m) \to \Delta_{kF}(\mathbb{R}^n)$ be defined $\widetilde{f}_{k*}(\omega)(p) := \widetilde{f}_{pk}^*(\omega(f(p)))$ $(p \in \mathbb{R}^n; \omega \in \Delta_{kF}(\mathbb{R}^m))$. Then prove that \widetilde{f}_{k*} is well-defined and it is a linear map.	d as
and it is a linear map.	ned
·	[6]

便主意研究的