Sardar Patel University, Department of Mathematics M.Sc. (Mathematics) External Examination 2019; Code:- PS01CMTH03: Subject:- Functions of Several Real Variables; Date: 25-03-2019, Monday; Time- 10.00 am to 01.00 pm; Max. Marks 70 Note: Notations and Terminologies are standard. | | and reminiologies are standard. | | | | | |--|--|--|---|-----------------------|------| | Q.1
(i) | Q.1 Choose correct option from given four choices.
(i) Let $x = (\sqrt{2}, 1, e)$ and $y = (\sqrt{2}, 2, e)$. Then $ x - y =$ | | | | | | | (a) 1 | (b) 2 | (c) 3 | (d) none | | | (ii) | Let $x, y \in \mathbb{R}^n$. Then | $\langle x,y\rangle \leq$ | | (a) none | | | | | (b) $ x y $ | (c) $ x ^2 y ^2$ | (d) $ x ^3 y ^3$ | | | (iii) | Let $x, y \in \mathbb{R}^n$ be orth | | | | | | | (a) 1 | (b) 2 . | (c) 3 | (d) 4 | | | (iv) | Let $a \in \mathbb{R}^n$ and $f : \mathbb{R}^n$ | $a \longrightarrow \mathbb{R}$ such that $D_x f$ | (a) exists for all $x \in \mathbb{R}^n$ | . Then | | | (a) f is continuous at a (c) $D_j f(a)$ exists for all $1 \le a$ (d) none | | | | | | | (v) | (v) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ such that $D_j f(a)$ exists for all $1 \le j \le n$. Then f is at a . | | | | | | | (a) Direc Diff. | (b) Cont. Diff. | () 115 | (d) None | | | (vi) Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined as $f(x) = \sqrt{ x_1 x_2 }$. Then | | | | | | | | (a) f is continuous(b) f is continuous or | | (c) f is differentiable(d) f is differentiable | Only at origin | | | (vii) | Let S and T be k -tens | ors on V . Then | . , , | only at origin | | | | (a) $S \otimes T = T \otimes S$
(b) $S + T = T + S$ | · . | (c) $S-T=T-S$
(d) None of these | | | | viii) <i>'</i> | The dimension of $\mathcal{T}^2(\mathbb{R}$ | $\mathbb{R}^4)$ is | | | | | | (a) 2 | (b) 4 | (c) 8 | (d) 16 | | | Q.2 Attempt any seven. (i) Let x, y ∈ Rⁿ be linearly dependent. Prove that ⟨x, y⟩ = x y . (ii) Let f, g: Rⁿ → R be differentiable. Prove that f + g is differentiable. (iii) Give an example of a function which is continuous but not differentiable at a point a. (iv) Define f: R² → R as f(x) = x₁x₂ . Prove that Df(0) exists. (v) Define f: R² → R as f(x) = x₂e^{x₁}. Find Df(0). (vi) Let A ⊂ Rⁿ be open, a ∈ A, and f: A → R. If f has maximum value at the point a and D_if(a) exists, then show that D_if(a) = 0. (vii) Is it true that if partial derivatives exist, then directional derivatives also exist? Justify. (viii) Is it true that S ⊗ T = T ⊗ S? Justify your answer. (vix) Let f: Rⁿ → R be differentiable. If df(p)(v_p) = Df(p)(v) (p, v ∈ Rⁿ), then prove that df(p) is a linear functional on Rⁿ_p for each p ∈ Rⁿ. | | | | | [14] | | | ÷. | | | entinue on Page-2) | | (P.T.O.) | Q.3 | 2 | |--|---------------| | (a) Let x, y ∈ ℝⁿ. Then prove that < x, y > = x y iff x and y are dependent. (b) Let A ⊂ ℝⁿ be closed, f : A → ℝ be a bounded function, and ε > 0. Then prove the set B = {x ∈ A : o(f:x) > ε} is closed in ℝⁿ | [6]
at the | | set $B = \{x \in A : o(f;x) \ge \varepsilon\}$ is closed in \mathbb{R}^n . | [6] | | OR | | | (b) Define norm preserving and inner product preserving linear map. Prove that both
definitions are equivalent. | | | Q.4 | [6] | | (a) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $a \in \mathbb{R}^n$. Define the derivation of f at a . If f is differentiable then prove that there exists unique linear transformation $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ such that | at a, [6] | | $\lim_{h \to 0} \frac{\ f(a+h) - f(a) - \lambda(h)\ }{\ h\ } = 0.$ | . [0] | | (b) State and prove the chain rule. | _ | | OR | [6] | | (b) Find the derivation of $f(x) = (x_1 x_2, x_1 + x_2^2)$ at (2.3). | [6] | | ₩ .0 | [6] | | (a) Let $a = (\pi, \pi)$ and $f(x) = (x_1 \cos x_2, x_1 - x_2)$ $(x \in \mathbb{R}^2)$. First find the Jacobian matrix $f'(a)$ and then find $Df(a)$. | atrix | | (b) Prove that continuously differentiable function is differentiable. | [6] | | | [6] | | (b) Give an example of the state stat | f_1 | | (b) Give an example of a function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ such that $D_j f(0)$ exists for all $j = 1, 2$ by is not continuous at 0. | ant f | | is not continuous at 0. Q.6 | [6] | | | (*) | | (a) Define Alt(T). If Alt(S) = 0, then prove that Alt(S⊗T) = 0 for any tensor T. (b) Define the wedge product. Prove that it is associative but not commutative. | [6] | | OR | [6] | | (b) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentially $T \to \widetilde{T}$ | | | (b) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable. Let $\widetilde{f}_{k*}: \Delta_{kF}(\mathbb{R}^m) \to \Delta_{kF}(\mathbb{R}^n)$ be defined $\widetilde{f}_{k*}(\omega)(p) := \widetilde{f}_{pk}^*(\omega(f(p)))$ $(p \in \mathbb{R}^n; \omega \in \Delta_{kF}(\mathbb{R}^m))$. Then prove that \widetilde{f}_{k*} is well-defined and it is a linear map. | d as | | and it is a linear map. | ned | | · | [6] | | | | 便主意研究的