(PTO)

Seat No			
[27]		No. of printed pages: 2	
SARDAR PATEL U M.Sc. (Mathematics) Semo Friday, 22 nd Ma PS01CMTH02, T	ester - I Exam urch, 2019		
Time: 10:00 a.m. to 01:00 p.m.		Maximum marks: 70	
Note: (1) Figures to the right indicate marks of t (2) Assume usual/standard notations where		stion.	
Q-1 Choose the most appropriate option for each	ch of the following	ng questions.	[80]
1. A function whose codomain iss			
(a) an indiscrete (b) a discrete		(d) a metric	
2. Interior of Q is in usual topolog		(1) ()	
(a) \mathbb{Q} (b) $\mathbb{R} \setminus \mathbb{Q}$	(c) K	(d) Ø	
3. Finite product of T_2 spaces	(a) is alogad	(d) need not be T_0	
(a) is T_1 (b) is compact		(a) need not be 12	
4. A complete metric space is compact if it(a) totally bounded(b) bounded		,	
5. $[a, b]$, where $a, b \in \mathbb{R}$, $a < b$ is not compa	ct in to	pology.	•
(a) indiscrete (b) discrete	(c) usual	(d) cofinite	
6. Closed subset of a space is com-			
(a) T_2 (b) T_1	(c) compact	(d) connected	
7. A metric space need not be	()	(1)	
(a) T_2 (b) T_4	(c) regular	(d) separable	
8. A subset of a Hausdorff space is (a) compact (b) connected	s normal. (c) bounded	(d) closed	
Q-2 Attempt any seven of the following.			[14]
(a) Prove that $\{(-n, n) \mid n \in \mathbb{N}\}$ is a base	for some topolog	gy on R.	
(b) Let X be a topological space and $A \subset$			
(c) Prove or disprove: $(\overline{A \cap B}) = \overline{A} \cap \overline{B}$.			
(d) Define totally bounded metric space.			
(e) Show that $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 0$	= x - 2 is a hom	neomorphism.	
(f) State Heine-Borel Theorem.		-	
(g) When is a subset A of a topological sp	ace (X, \mathcal{T}) calle	ed compact?	
(h) Define a separable topological space ar			
(i) Define a normal topological space.		· .	
(1) Donne a riormar acharage shape			

Q-3	(a)	State and prove Pasting lemma.	[06
		Let $\mathscr{T}, \mathscr{T}'$ be two topologies on a set X generated by the bases $\mathscr{B}, \mathscr{B}'$ respectively. Prove that \mathscr{T}' is finer than \mathscr{T} if and only if for every $B \in \mathscr{B}$ and for every $x \in B$, there exists $B' \in \mathscr{B}'$ such that $x \in B' \subset B$.	[06
		OR	
	(b)	Prove that a topological space X is T_1 if and only if every singleton subset of X is closed in X .	[06]
Q-4	(a)	State and prove Cantor's intersection theorem.	[06]
	(b)	Prove that projections are open and continuous maps.	[06]
		\mathbf{OR}	
	(b)	Let (X_i, \mathcal{T}_i) be topological spaces and $X = \prod_{i=1}^n X_i$ be the product space with product topology. Prove that X is T_1 if and only if each X_i is T_1 .	[06]
Q-5	(a)	Show that [0, 1] is compact.	[06]
	(b)	Prove that compact subset of a Hausdorff space is closed.	[06]
		OR	[]
		Let X be a topological space. Prove that X is compact if and only if every family of closed subsets of X with finite intersection property has non-empty intersection.	[06]
Q-6	(a)	Prove that a topological space X is T_4 if and only if for every open set $G \subset X$ and a closed set $E \subset G$, there exists an open set $H \subset X$ such that $E \subset H \subset \overline{H} \subset G$.	[06]
1		Prove that every second countable topological space is separable.	[06]
		\mathbf{OR}	. ,
((b)	Prove that every metric space is normal.	[06]