Seat No			
[[4]	•	No. of printed pages: 2	
SARDAR PATEL M.Sc. (Semester - Tuesday Apri Time: 10:00 a.m. Subject: Mat Course No. PS01EMTH22 (Math	I) Examination I 24, 2018 to 01:00 p.m. thematics		
Note: (1) All the questions are to be answered in (2) Figures to the right indicate marks of t (3) Assume standard notations wherever a	the respective question		7 0
Q-1 Choose the most appropriate option for ea	ch of the following	questions:	(08)
1. A particle moving on the surface of a sp.			
(a) a rheonomic	(c) a holonomic		
(b) a non-holonomic	(d) not a		
2. Lagrangian of a system of particles is			
(a) not unique (b) unique	(c) constant	(d) zero	
3. The condition for extremum of the integ	ral $J = \int_{x_1}^{x_2} f(\dot{y}, x)$	dx is	
(a) $\frac{d}{dx} \left(\frac{\partial f}{\partial \dot{y}} \right) = 0$	(c) $\frac{d}{dx} \left(\frac{\partial f}{\partial \dot{y}} \right) - \frac{\partial f}{\partial \dot{y}}$	=0	
(b) $\frac{d}{dx} \left(\frac{\partial f}{\partial \dot{y}} \right) - \frac{\partial f}{\partial x} = 0$	(d) $\frac{d}{dy} \left(\frac{\partial f}{\partial \dot{x}} \right) - \frac{\partial f}{\partial x}$	= 0	
4. If Lagrangian L does not depend on q_j ϵ			
(a) L (b) H	(c) q_j	(d) p_j	
5. Which of the following is correct? (a) $\frac{\partial L}{\partial t} = \frac{\partial H}{\partial t}$ (b) $q_j = \frac{\partial H}{\partial \dot{p}_j}$	(c) $\dot{q}_j = \frac{\partial H}{\partial p_j}$	(d) $p_j = -\frac{\partial H}{\partial q_j}$	
6. In matrix form of Hamilton's equations			
54	2.7	(d) $-J\frac{\partial H}{\partial \eta}$	
7. For symplectic matrices M and N , the M			
(a) MN (b) $M+N$		(d) MN	
8. $[p_2, q_1] = $; notations being usu (a) 0 (b) 1	(c) -1	(d) none of these	
Q-2 Answer any seven of the following:			(14)
(a) Define a non-holonomic constraint and	l give its example.		
(b) What is a rigid body? State degrees three particles.	of freedom in rigi	d body with more than	
(c) Define action integral.			
(d) State the condition for extremum of the	he integral $\int_{t_1}^{t_2} L(q,$	$(\dot{q},t) dt$?	
(e) Define a cyclic coordinate.	•		
(f) In usual notations show that $\frac{\partial H}{\partial t} = \frac{dH}{dt}$, '•		
(g) State Routhian equations of motion for		degrees of freedom.	

- (h) Show that Poisson bracket is linear in the first variable.
- (i) State the form of generating functions of type F_1 and F_2 .
- Q-3 (a) State Lagrange's equations of motion in general form and hence derive the form when the forces are conservative and potential is independent of velocities.
 - (b) Derive Lagrange's equations of motion for a spherical pendulum. (06)

OR

- (b) Let L be Lagrangian of a system with n-degrees of freedom and $L' = L + \frac{dF}{dt}$, where $F(q_1, q_2, \ldots, q_n, t)$ is an arbitrary differentiable function of its arguments. Show that L' satisfies Lagrange's equations of motion.
- Q-4 (a) State and prove the law of conservation of total energy in Lagrangian formalism. (06)
 - (b) Let $L = \frac{I_1}{2}(\dot{\theta}^2 + \dot{\phi}^2\sin^2\theta) + \frac{I_3}{2}(\dot{\psi} + \dot{\phi}\cos\theta)^2 mgl\cos\theta$ be the Lagrangian of a system. Compute the energy function. Is it conserved? Why?

OR

- (b) Lagrangian of a system is given by $L = \frac{m}{2}(\dot{x}^2 + \dot{y}^2) (x^2 + y^2)^{\frac{1}{2}}$. How many generalized coordinates are there? Which of them are cyclic? Compute the generalized momenta. Is any of them conserved? Justify.
- Q-5 (a) State Hamilton's modified principle and hence derive Hamilton's equations of motion from it. (06)
 - (b) Describe Routhian procedure and obtain Routhian of a system with Lagrangian (06) $L = \frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) + \frac{k}{r}.$

OR

- (b) Let $L = \frac{1}{2}m(\dot{q}^2 k^2q^2)$ be Lagrangian of a system, where m and k are constants. Obtain the corresponding Hamiltonian and hence derive Hamilton's equations of motion.
- Q-6 (a) Derive the symplectic condition for a transformation to be canonical (06)
 - (b) Define canonical transformation. Check whether $Q = \log\left(\frac{\sin p}{q}\right)$, $P = q \cot p$ is a canonical transformation or not.

OR

(b) Describe the method of obtaining formal solution of a mechanical problem using Poisson bracket formalism. (06)
