[13]

No. of printed pages: 2

SARDAR PATEL UNIVERSITY M. Sc. (Semester I) Examination

Date: 24-04-2018

Time: 10.00 To 01.00

Subject: MATHEMATICS

Paper No. PS01EMTH21 - (Graph Theory - I)

Total Marks: 70

Choose the correct option for each question: 1.

[8]

(1) If $K_{1,n} = K_{n+1}$, then

- (a) n = 1
- (b) n = 2
- (c) n > 2

(d) none of these

(2)A symmetric digraph is

- (a) Euler
- (b) connected
- (c) regular

(d) balanced

For $G = C_5$ with anticlockwise direction, rank(B) is

- (b) 4

(d) none of these

(4) Let T be a spanning in-tree with root R. Then

- (a) $d^{-}(R) = 0$
- (b) $d^{-}(R) > 0$
- (c) $d^{+}(R) > 0$

(d) none of these

The coefficient c₂ in chromatic polynomial of C₇ is

- (a) 0
- (b) 1
- (c)7

(d) 7!

(6) If G is a planar graph, then χ(G)

- (a) = 4
- (b) ≤ 4
- (c) 5

(d) none of these

(7) Let G be a simple graph without isolated vertex. Then a matching M in G is

- (a) maximum \Rightarrow perfect
- (c) maximum \Rightarrow maximal
- (b) maximal \Rightarrow maximum
- (d) maximum ⇒ perfect

(8) For which of the following graphs, $\alpha'(G) = \beta(G)$?

- (a) C₉
- (b) K_{10}
- (c) K₁₁

(d) P_{12}

2. Attempt any SEVEN:

[14]

- Find the diameter of $K_{m,n}$ (m, $n \ge 2$). (a)
- Prove or disprove: An Euler digraph is connected. (b)
- (c) Define adjacency matrix in a digraph and give one example of it.
- Prove or disprove: Every connected digraph has a spanning out-tree. (d)
- Prove or disprove: If G is a bipartite graph, then it is a tree. (e)
- Define uniquely colourable graph. (f)
- (g) Why P_4 is not isomorphic to $K_{1,3}$?
- (h) Define an edge cover of a graph and give one example of it.
- (i) Prove or disprove: The graph P₈ has a perfect matching.

(P.T.O.)

3. Define the following with examples: [6] (i) Asymmetric digraph (ii) Symmetric digraph (iii) Strongly connected digraph Prove: An arborescence is a tree in which every vertex other than the root has an [6] in-degree exactly one. (b) Obtain De Bruijn cycle for r = 3 with all detail. [6] 4. (a) Let G be a connected digraph with n vertices. Prove that rank of A(G) = n - 1. [6] Prove that for each $n \geq 1$, there is a simple digraph with n vertices v_1, v_2, \dots, v_n [6] such that $d^+(v_i)=i-1$ and $d^-(v_i)=n-i$ for each i=1,2,...n. (b) Define spanning in-tree, spanning out-tree & give one example of each in a single [6] digraph. 5. Prove: If G is Hamiltonian, then, for each $S \subset V(G)$, $c(G - S) \leq |S|$. [6] (b) Prove: If a graph does not contain an odd cycle, then it is 2-chromatic. [6] OR Find the coefficients c2 and c3 of Chromatic polynomial of graph C4. (b) [6] 6. (a) Let G be a graph (no isolated vertex) with n vertices. Prove that $\alpha'(G) + \beta'(G) = n$. [6] Prove: Every component of a symmetric difference of two matching is either a (b) [6] path or a cycle of even length. OR (b) Define $\alpha'(G)$, $\beta(G)$ and find it with the corresponding sets for $G = K_5$. [6]

2`