SARDAR PATEL UNIVERSITY

M.Sc. (Semester-I) Examination

April – 2018 Tuesday 24/04/2018

Time: 10:00 AM to 1:00 PM

Subject: Mathematics

SEAT No.

Course No.PS01EMTH02

Mathematical Classical Mechanics

	Mathematical Classical Mechanics	
Note: 1) All qu	nestions (including multiple choice questions) are to be answered in the answer book only.	
2) Numb	pers to the right indicate full marks of the respective question.	Ks; 70
Q-1	Choose most appropriate answer from the options given.	(08)
(1)	For a system of N particles having n degrees of freedom	
(2)	(a) $n \le N$ (b) $N \le n$ (c) $n = N$ (d) none of these is true The motion of a particle on a sphere is constraint.	
(2)	(a) not a (b) a holonomic (c) non-holonomic (d) conservative	
(3)	The condition for extremum of $I = \int_{x_1}^{x_2} f(y, y, x) dx$ is	
	(a) $\frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) = 0$ (b) $\frac{\partial f}{\partial x} = constant$	
	(c) $\frac{d}{dx} \left(\frac{\partial f}{\partial \dot{y}} \right) - \frac{\partial f}{\partial y} = 0$ (d) $\left(\frac{\partial f}{\partial \dot{y}} \right) = constant$	
(4)	If $\frac{\partial L}{\partial t} = 0$ then is conserved	
	(a) p_j (b) h (c) p_j (d) E	
(5)	Which one of the following is correct?	
	(a) $\frac{\partial H}{\partial p_j} = 0$ (b) $H = E$ (c) $\frac{dH}{dt} = -\frac{\partial L}{\partial t}$ (d) none of these	
(6)	If Lagrangian does not depend on a coordinate q_i explicitly then	
• •	(a) $\frac{\partial H}{\partial q_j} = 0$ (b) $p_j = 0$ (c) $\frac{\partial H}{\partial p_j} = 0$ (d) $\frac{\partial H}{\partial q_j} \neq 0$	
(7)	For the Jacobian matrix M for a canonical transformation pick the correct statement	
	(a) M is Identity (b) $ M = 0$ (c) M is symplectic (d) M is singular	
(8)	In usual notations, $[p_1, q_1] = \underline{\hspace{1cm}}$ (a) 0 (b) -1 (c) 1 (d) zero matrix	
	(a) 0 (b) -1 (c) 1 (d) zero matrix	
0.0		(14)
Q-2	Answer any Seven.	(11)
	Give an example of holonomic constraint.	
(2)	State Lagrange's equations of motion in the case of velocity dependant	
(0)	potential. State Euler-Lagrange equations and hence derive condition for extremum	
(3)	of $J = \int_{x_1}^{x_2} f(\dot{y}_1, \dot{y}_2, \dots \dot{y}_n, x) dx$.	
(A)	Define generalized momentum conjugate to a generalized coordinate.	
(4)	When it is conserved?	
	11 ALVAL AV AV TVARVA (TW)	

- (5) State Hamilton's equations of motion in matrix form.
- (6) Is it true that inverse of a canonical transformation is also a canonical transformation?
- (7) State transformation equations for a generating function of type F₁.
- (8) Define Lagrange bracket.
- (9) Find [u, v] for $u = q_1 q_2$, $v = p_1 p_2$.

Q-3

- (a) State Lagrange's equations in general form and hence derive the form in (06) the case of frictional forces.
- (b) Giving all details obtain Lagrange's equations of motion for Atwood's (06) machine.

OR

(b) Obtain Lagrangian for a spherical pendulum.

Q-4

- (a) Discuss conservation of total energy using Lagrangian formalism. (06)
- (b) Obtain the curve for minimum surface of revolution using variational principle. (06)

OR

(b) Lagrangian of a system is given by $L = \frac{1}{2}(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{1}{r^2}$. Obtain expressions of all generalized momenta, energy function. Which of them are conserved?

Q-5

- (a) State Hamilton's modified principle. Using it derive Hamilton's equations (06) of motion.
- (b) State and prove principle of least action. (06)

OF

(b) Obtain Hamiltonian corresponding to the Lagrangian

$$L = a \dot{x}^{2} + b \frac{\dot{y}}{x} + c \dot{x} \dot{y} + f y^{2} \dot{x} \dot{z} + g \dot{y} - k \sqrt{x^{2} + y^{2}}$$

Q-6

- (a) Define Poisson bracket. State the matrix form of Poisson bracket and show that they are invariant under a canonical transformation. (06)
- (b) Show that the transformation, $Q = \log(1 + \sqrt{q}\cos p), P = 2\sqrt{q}(1 + \sqrt{q}\cos p)\sin p$ is canonical. (06)

OK

(b) Hamiltonian for a motion in one dimension with constant acceleration a is given by $H = \frac{p^2}{2m} - max$. Using Poisson bracket formalism obtain the expression for x subject to the conditions $x = x_0$, $p = p_0$ at t = 0.