[21]

No of printed pages: 2

Sardar Patel University

M.Sc. (Sem-I), PS01CMTH25; Methods of Differential Equations; (NC) Saturday, 21st April, 2018; 10.00 a.m. to 01.00 p.m.

Maximum Marks: 70

Note: (i) Notations and terminologies are standard; (ii) Figures to the right indicate marks.

Q.1 Answer the following.

[8]

- 1. The function $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{\cos x 1}{x}, x \neq 0$ and $f(0) = \frac{1}{3}$ is
 - (A) analytic at 0

- (B) continuous but not differentiable at 0
- (C) not continuous at 0
- (D) none of these
- 2. The set of singular points of $xy'' + (e^x 1)y = 0$ is
 - $(A) \{0\}$
- ·(B) {1}
- (D) none of these

- 3. $J_3(x) =$

- (D) none of these
- $(A)' J_{-3}(x)$ (B) $-J_{-3}(-x)$ (C) $J_3(-x)$ 4. $\int_{-1}^{1} x P_1(x) dx = \int_{-1}^{1} x P$
- (B) $\frac{1}{3}$

- (A) $\frac{2}{3}$ (B) $\frac{1}{3}$ (C) 0 (D) 5. Which of the following is an integrating factor of $2xydx + x^2dy$?
- (B) $\frac{1}{xy}$
- (D) none of these
- 6. Which one is homogeneous Pfaffian differential equation?
 - (A) $x^2ydx + y^2xdy + zydz = 0$
 - (B) $(x^{2}+1)dx + (y^{2}+1)dy + (z^{2}+1)dz = 0$
 - (C) xydx + yzdy + zdz = 0
 - (D) none of these
- 7. $F(-1, \frac{1}{2}; \frac{1}{2}; \frac{1}{2}) =$ (A) 1
- (C) -1
- (D) none of these

- · 8. $F(\alpha, \beta; \gamma; 1)$ converges if
 - (A) $\gamma > \alpha 2\beta$

(B) $\gamma > \alpha + \beta$

(C) $\gamma < \alpha + \beta - 1$

(D) $2\alpha < 2\gamma - 1$

Q.2 Attempt any seven:

[14]

- (a) Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$.
- (b) Define ordinary point of a differential equation.
- (c) Show that $\Gamma(x+1) = x\Gamma(x)$, where x > 0.
- (d) Show that between any two positive zeros of J_0 there is a zero of J_1 .
- (e) State Rodrgue's formula and hence find $P_0(x)$.
- (f) State Picard's theorem.
- (g) Find $F(\alpha, \beta; \gamma; 0)$.
- (h) Find a partial differential equation by eliminating a and b from z = (x a)(y b).
- (i) Define Pfaffian differential equation in three variables and what is the necessary and sufficient condition that it is integrable?

Q.3

(a) Solve: y'' - xy = 0 near 0.

[6]

(b) Classify singularities of $x^4y'' + x^3(x+2)y' + y = 0$ near ∞ .

[6]

[6] [6]

(b) Solve: $2x^2y'' + 3xy' - (x+1)y = 0$ near 0.

- (a) Prove: $\frac{d}{dx}[x^{-\alpha}J_{\alpha}(x)] = -x^{-\alpha}J_{\alpha+1}(x)$. (b) Prove: $\int_{-1}^{1} P_n(x)P_m(x)dx = 0$ where $m \neq n$.

(b) Find the first four terms of the Fourier-Legendre expansion of the function

$$f(x) = \begin{cases} 0, & -1 \le x \le 0 \\ 1, & 0 < x \le 1. \end{cases}$$

Q.5

- (a) Solve y' (x + y) = 0, y(0) = 1 using Picard's method of successive approximations. [6]
- (b) State and prove integral representation of Gauss's hypergeometric function.

[6]

- (b) Prove: $P_n(x) = F(-n, n+1; 1; \frac{1-x}{2})$.

Q.6

- (a) Find a necessary and sufficient condition that there exists between two functions u(x,y) and v(x,y), a relation F(u,v)=0 not involving x or y explicitly.
- (b) Solve: $(x^2 + y^2)p + 2xyq = (x + y)z$.

[6]

(b) Verify that the differential equation $(y^2 + yz)dx + (z^2 + zx)dy + (y^2 - xy)dz = 0$ is integrable and find its primitive.