[34]

SARDAR PATEL UNIVERSITY

M.Sc. (Mathematics) Semester - I Examination (NC)
Thursday, 19th April, 2018
PS01CMTH24, Linear Algebra

Time:	10:00	a.m.	to	01:00	p.m.
-------	-------	------	----	-------	------

Maximum marks: 70

Note: 1. F

- 1. Figures to the right indicate full marks of the respective question.
- 2. Assume standard notations wherever applicable.

Q-1 Write the question number and appropriate option number only for each question.

[8]

- 1. Let V be any vector space over a field F. Let W be a subspace of V and W^0 be annihilator of W. If dim V = 5, dim $W^0 = 3$, then dim W =_____.
 - (a) 1
- (b) 2
- (c) 3
- (d) 5
- 2. For subspaces U and W of a vector space V over F, _____ need not be a subspace of V.
 - (a) $L(U) \cup L(W)$
- (b) $U \cup W$
- (c) $U \cap W$
- (d) $L(U) \cap L(W)$
- 3. Let V be a finite-dimensional vector space and $S \in A(V)$ be right invertible. Then _____.
 - (a) S is singular
- (b) S is one-one
- (c) S is 0
- (d) S is nilpotent
- 4. Let V be a vector space over a field F with dim V = n. Then the algebra Hom(V, V) over F is isomorphic to _____
 - (a) $F_n[x]$
- (b) $M_n(F)$
- (c) F^n
- (d) V
- 5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(x_1, x_2, x_3) = (0, x_1, x_2), (x_1, x_2, x_3) \in \mathbb{R}^3$. Then the index of nilpotence of T is _____.
 - (a) 0
- (b) 1
- (c) 2
- (d) 3
- 6. Let V vector space over F and $T \in A(V)$ be nilpotent. Then $I + T^2 + 3T^3$ is _____.
 - (a) nilpotent
- (b) singular
- (c) regular
- (d) none of these
- 7. Let $A \in M_n(\mathbb{C})$ with $\det(A) = -1$. Then $\det(A^{-1}) = \underline{\hspace{1cm}}$.
 - (a) 1
- (b) -1
- (c)
- (d) -i
- 8. Let F be a field and $A \in M_n(F)$ be nilpotent. Then $\det(A^2) = \underline{\hspace{1cm}}$.
 - (a) 0
- (b) 2
- (c) 4
- (d) none of these

Q-2 Attempt Any Seven of the following:

[14]

- (a) Let S be a non-empty subset of a vector space V over F. Show that L(S) is a subspace of V.
- (b) Let W be a subspace of a vector space over F. Define annihilator of W.
- (c) Let V be a finite dimensional vector space over F and $T \in A(V)$. Show that a characteristic root of T is a root of the minimal polynomial for T.
- (d) Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(x_1, x_2, x_3) = (2x_1 + x_2, 2x_2 + x_3, 2x_3 + x_1), (x_1, x_2, x_3) \in \mathbb{R}^3$. Find the matrix of T with respect to standard basis of \mathbb{R}^3 .
- (e) Define nilpotent linear transformation on a vector space and give an example.
- (f) Let V be a vector space over a field F and $T \in A(V)$ be nilpotent. Show that I T is invertible under T.
- (g) Show that trace of a matrix is a linear operator on $M_n(F)$, where F is a field.
- (h) Show that similar matrices have the same determinant.
- (i) Find the symmetric matrix associated with the quadratic form: xy + yz + zx.

CP. T.O.)

Q-3 (a) Let V be a vector space and $\{v_1, v_2, \ldots, v_n\}$ be a basis of V. If $\{w_1, w_2, \ldots, w_m\}$ is a linearly [6] independent set of V, then show that $m \leq n$. (b) Let $V = U_1 \oplus \cdots \oplus U_n$ be the internal direct sum of U_1, \ldots, U_n . Show that V is isomorphic [6] to the external direct sum of U_1, \ldots, U_n . OR (b) Let V be a finite-dimensional vector space over a field F. If W is a subspace of V then [6] show that W is also finite-dimensional and $\dim V/W = \dim V - \dim W$. **Q-4** (a) Let V be a vector space over a field F and let $T \in A(V)$. Show that T is invertible if and [6] only if the constant term of the minimal polynomial for T is non-zero. (b) Let V be a finite-dimensional vector space over F and $S, T \in A(V)$. Show that $r(ST) \leq$ [6] r(T). Further if S is invertible, then show that r(ST) = r(TS) = r(T). OR (b) Let V be a finite-dimensional vector space over F. Show that A(V) is closed under addition. [6] multiplication, and scalar multiplication. Q-5 (a) Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent. Then show [6] that the invariants of T are unique. (b) Let V be a finite dimensional vector space over $F, T \in A(V)$, and V_1 and V_2 be subspaces [6] of V invariant under T such that $V=V_1\oplus V_2$. Let $T_1=T\restriction_{V_1}$ and $T_2=T\restriction_{V_2}$. If minimal polynomials for T_1 and T_2 over F are $p_1(x)$ and $p_2(x)$ respectively, then show that the minimal polynomial of T over F is the least common multiple of $p_1(x)$ and $p_2(x)$. (b) Let V be a finite-dimensional vector space over F and $T \in A(V)$. If T has all its charac-[6] teristic roots in F, then show that there is a basis of V with respect to which the matrix of T is upper triangular. **Q-6** (a) Prove that determinant of the product of two $n \times n$ matrices over a field F is the product [6] of their determinants. (b) Prove that interchanging two rows of a matrix changes the sign of its determinant. 6 OR. i. State and prove Cramer's rule. 4 ii. For $A, B \in M_2(\mathbb{R})$, by giving an example, show that $\operatorname{tr}(AB) \neq \operatorname{tr}(A) \operatorname{tr}(B)$. 2