[39]

No. of Printed Pages: 2

Sardar Patel University

M.Sc. (Mathematics) External Examination 2018;

Code:- PS01CMTH23: Subject:- Functions of Several Real Variables; Date: 12-04-2018, Thursday; Time- 10.00 am to 01.00 pm; Max. Marks 70 Note: Notations and Terminologies are standard.

Q.1 Choose correct option from given four choices.

[08]

- (i) Let $x, y \in \mathbb{R}^n$. Then
 - (a) $\langle x, y \rangle \ge 0$ (b) $\langle x, y \rangle = 0$ (c) $\langle x, y \rangle \le 0$

(d) none

- (ii) Which of the following is true?
- (a) $\lim_{x \to 0} \frac{\sin x}{x} = 0$ (b) $\lim_{x \to 0} \frac{\cos x}{x} = 1$ (c) $\lim_{x \to 0} x \cos(\frac{1}{x}) = 0$ (d) none
- (iii) Let a=(2,1) and $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ be defined as $f(x)=x_1x_2$. Then Df(a)=
 - (a) $\pi_1 + \pi_2$
- (b) $2\pi_1 + \pi_2$
- (c) $\pi_1 + 2\pi_2$
- (d) none
- (iv) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be differentiable at $a \in \mathbb{R}^n$. Then which is false?
 - (a) $D_x f(a)$ exists for all $x \in \mathbb{R}^n$
- (c) $D_j f(a)$ exists for all $1 \leq j \leq n$

(b) f is continuous at a

- (d) All are false.
- (v) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ such that $D_x f(a)$ exists for all $x \in \mathbb{R}^n$. Then
 - (a) f is continuous at a

- (c) f is differentiable at a
- (b) $D_j f(a)$ exists $(1 \le j \le n)$
- (d) None
- (vi) Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined as $f(x) = \sqrt{|x_1 x_2|}$. Then
 - (a) f is continuous only at origin
- (c) f is differentiable

(b) f is continuous

- (d) f is differentiable only at origin
- (vii) Let S and T be k-tensors on V. Then
 - (a) $S \otimes T = T \otimes S$ (b) S T = T S

(c) S + T = T + S

(d) none

- (viii) The dimension of $\mathcal{T}^4(\mathbb{R}^3)$ is
 - (a) 81
- (b) 12
- (c) 64
- (d) 7

Q.2 Attempt any seven.

- (i) Define Euclidean norm and inner product on \mathbb{R}^n .
- (ii) Prove that $||x + y|| \le ||x|| + ||y||$ $(x, y \in \mathbb{R}^n)$.
- (iii) Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be linear. Prove that T is continuous.
- (iv) Define $f: \mathbb{R} \longrightarrow \mathbb{R}$ as $f(x) = x^2 + 3x$. Prove that $Df(5) = \lambda_{13}$.
- (v) If $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is differentiable at a, then prove that each f^i is differentiable at a.
- (vi) Define the differentiability of $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ at $a \in \mathbb{R}^n$.
- (vii) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ and $a, x \in \mathbb{R}^n$. Show that $D_{sx}f(a) = sD_xf(a)(s \in \mathbb{R})$.
- (viii) Let $T: (\mathbb{R}^3)^2 \longrightarrow \mathbb{R}$ be $T(x,y) = x_1 + y_2$. Does $T \in \mathcal{T}^2(\mathbb{R}^3)$? Why?
- (ix) Define tensor product and wedge product.

(P. T.O.)

[14]

Q.3

- (a) Let $x, y \in \mathbb{R}^n$. Prove that $|\langle x, y \rangle| = ||x|| ||y||$ iff x and y are linearly dependent. [6]
- (b) Let $A \subset \mathbb{R}^n$ be closed, let $f: A \longrightarrow \mathbb{R}$ be a bounded function, and let $\varepsilon > 0$. Then prove that the set $B = \{x \in A : o(f; x) \ge \varepsilon\}$ is closed in \mathbb{R}^n . [6]

OR

(b) Define $T(x)=(x_1+x_2,2x_1+x_2)$ $(x\in\mathbb{R}^2)$. Find a matrix A such that T(x)=xA $(x\in\mathbb{R}^2)$.

Q.4

(a) If a function $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, then there exists a unique linear transformation $\lambda: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ such that

 $\lim_{h \to 0} \frac{||f(a+h) - f(a) - \lambda(h)||}{||h||} = 0.$

- (b) Let $f, g : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be differentiable at $a \in \mathbb{R}^n$. Then prove that fg is differentiable at a. [6] OR
- (b) State and prove the chain rule.

[6]

Q.5

(a) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be differentiable at $a \in \mathbb{R}^n$. Then $D_j f^i(a)$ exists for all $1 \le i \le m$ and for all $1 \le j \le n$. Moreover, the Jacobian matrix [6]

 $f'(a) = \begin{bmatrix} D_1 f^1(a) & D_2 f^1(a) & \cdots & D_n f^1(a) \\ D_1 f^2(a) & D_2 f^2(a) & \cdots & D_n f^2(a) \\ \vdots & \vdots & \cdots & \vdots \\ D_1 f^m(a) & D_2 f^m(a) & \cdots & D_n f^m(a) \end{bmatrix}$

(b) Prove that every continuously differentiable function is differentiable.

[6]

[6]

[6]

OR

(b) Find the derivation of $f(x) = (x_1, \cos(x_2x_3), x_2)$ at $a = (0, 1, \pi)$.

- (a) Let V be a vector space with dimension n and $k \in \mathbb{N}$. Prove that $\dim(\mathcal{T}^k(V)) = n^k$.
- (b) Let $S \in \mathcal{T}^k(V)$ such that Alt(S) = 0 and $T \in \mathcal{T}^\ell(V)$. Prove that $Alt(S \otimes T) = 0$.

OR

(b) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be differentiable. Then prove that

[6]

$$\widetilde{f}_{1*}(d\pi_i) = \sum_{j=1}^n D_j f^i \cdot d\pi_j \quad (1 \le i \le m).$$