Seat No.:		No	of printed pages: 2	
[31]	– Sardar Pati	EL UNIVERSITY		
\ ~J		Semester - I Examinati	on (NC)	
	* *	Sth April, 2018		
10.00		22, Topology-I	: timum marks: 70	
	m. to 01:00 p.m.		•	
•	the right indicate full mar andard notations wherever	ks of the respective questing applicable.		
		riate option number onl	v for each question.	[8]
				[~]
, .		_ topology on R is the fin	4. 1	
(i) cofinite	, ,	(iii) lower limit	(iv) usual	
` '	whose codomain is		(iv) metric	
(i) indiscre		ic spaces maps a se	, ,	
quence.	M2 Ifficefor Detacer mon	ic spaces maps a oc	qualities we	
-	y, convergent	(iii) bounded, Cauchy	/	
(ii) conver	gent, Cauchy	(iv) Cauchy, bounded	1	
(d) Projection	s are			
(i) contim	ious (ii) constant	t (iii) closed	(iv) bounded	
(e) [0,1) is con	nnected with topolog			
(i) discret	, ,	(iii) lower limit	(iv) indiscrete	÷
· /	topology is not T_3 .	/!!\	(* A 1 1! '4	
(i) cocoun	• •	` '	(iv) lower limit	
(g) subs	space of normal space is T_{ϵ} (ii) Compact	(iii) Hausdorff	(iv) infinite	•
. ,	space of a complete metric	• •	(11)	
(i) Any	(ii) Compact	(iii) Open	(iv) infinite	
,,,	• • • •		:	14
•	y Seven of the following:		we tanalage as D	[14]
(a) Show that $\{[a,b): a \in \mathbb{Q}, b \in \mathbb{N}, a < b\}$ is an open base for some topology on \mathbb{R} .				
. ,	e interior of Q in cocountal		C. ID I ID	
is contin	-	ogy. Show that a one-one	function $f: \mathbb{R} \to \mathbb{R}$	
(d) Show that projections are continuous.				•
	(e) Define second countable space and separable space.			
• •	e a topological space. If X ty, proper $A \subset X$ such that	is disconnected, then show A is clopen in X .	w that there exists a	
(g) Define a	T_3 -space and show that a	discrete space is T_3 .		
(h) State Urysohn's Lemma.				
` '	•	logy is second countable,	then show that X is	
countab	le.		CP. T. ().)

Q-3 (j) Define open base. Show that $\mathscr{B}_1 = \{(a,b): a,b \in \mathbb{Q}, a < b\}$ and $\mathscr{B}_2 = \{(a,b): a,b \in \mathbb{Q}, a < b\}$ [6] $a,b \in \mathbb{R}, a < b\}$ generate the same topology on \mathbb{R} . (k) Define $closure\ of\ a\ subset\ of\ a\ topological\ space.$ For a subset A of a topological [6] space X, show that $\overline{A} = A \cup A'$. OR (k) Define a T_1 -space and show that a subspace of a T_1 -space T_1 . 6 Q-4 (1) Define continuous function. Let X,Y be topological spaces and $f:X\to Y$ be a function. Show that f is continuous if and only if $f^{-1}(E)$ is closed for every 6 closed subset E of Y. (m) Show that a subset of a metric space is bounded if and only if it is contained in [6] some open sphere. OR(m) Define homeomorphism. Show that homeomorphic image of a T_1 -space is T_1 . [6] \mathbf{Q} -5 (n) Show that a topological space X is disconnected if and only if there is a continuous [6] function f from X onto $\{0,1\}$, where $\{0,1\}$ carries the discrete topological space. (o) Show that every second countable topological space is separable. [6] OR (o) Show that a compact metric space is bounded but the converse does not hold. [6] Q-6 (p) Show that a topological space X is T_4 if and only if for every open set $G \subset X$ and a closed set $E\subset G$, there exists an open set $H\subset X$ such that $E\subset H\subset \overline{H}\subset G$. [6] (q) Let (X, d) be a metric space and A be a nonempty subset of X. Show that $x \in \overline{A}$ if and only if d(x, A) = 0. [6] OR (q) State and prove Cantor's Intersection Theorem. 6