	Sardar Patel University Mathematics M.Sc. Semester I CNC) Tuesday, 10 April 2018 10.00 a.m. to 1.00 p.m.	No of printed pages: 2
	PS01CMTH21 - Complex Analysis	SI .
		Maximum Marks: 70
	Fill in the blanks. Let $z \in \mathbb{C}$. Which of the following is true?	[8]
	(a) $ \text{Re } z + \text{Im } z \le z $ (c) $ \text{Re } z + $ (b) $ \text{Re } z + \text{Im } z \ge z $ (d) $ \text{Re } z \ge $	$ \operatorname{Im}_{ z } z = z \qquad \qquad \cdot $
(2)	If $\lim_{z\to z_0} f(z) = w_0 $ implies that $\lim_{z\to z_0} f(z) = w_0$, (a) $w_0 = 0$ (b) $ w_0 = 1$ (c) $ w_0 \ge 0$	then (d) $w_0 \in \mathbb{R}$
(3)	B) Let v and V be harmonic conjugates of u on a domain D . Which of the following is not true?	
•	(a) $V - v$ is a constant map (b) $(v - V)_x = 0$ (c) $v_y - V_y = 0$ (d) $v = V$	0
(4)	The set of zeros of $\sinh z$ is	
	(a) $\{n\pi : n \in \mathbb{Z}\}$ (b) $\{n\pi i : n \in \mathbb{Z}\}$ (c) $\{\frac{2n+1}{2}\pi : n \in \mathbb{Z}\}$	$n \in \mathbb{Z} \} $ (d) $\{ \frac{2n+1}{2} \pi i : n \in \mathbb{Z} \}$
(5)	The value of $\int_{ z =1} e^{-z^2} dz$ is	
	(a) 0 (b) $\frac{\sqrt{\pi}}{2}$ (c) $\sqrt{\pi}$	(d) π
(6)	Which of the following is a bounded function?	
	(a) $\sin^2 z + \cos z$ (b) $\cosh^2 z - 1$ (c) $\sinh^2 z +$	$\cosh^2 z(d)$ None of these
(7)	The series $\sum_{n=0}^{\infty} nz^n$ converges for	
	(a) $ z = 1$ (b) $ z \le 1$ (c) $ z \ge 1$	z <1
(8)	0 is of $z \sin \frac{1}{z}$.	
	(a) a removable singularity (c) a pole of (b) a pole of order 1 (d) an essent	
(a)	Attempt any Seven . If $\lim_{z\to z_0} f(z) = w_0$ and $w_0 \neq 0$, then show that there $ f(z) \geq c$ whenever $0 < z-z_0 < \delta$. Find the product of all roots of $z^{20} = 1$.	is $\delta > 0$ and $c > 0$ such that
(2)	1	(PTO)

SEAT No.

- (c) Is the set $\{z \in \mathbb{C} : |z| \ge 1\}$ domain? Why?
- (d) Show that the sum of two harmonic functions is a harmonic function.
- (e) Find real and imaginary parts of $f(z) = ze^z$.
- (f) If C is the boundary of the triangle with vertices at the points 0, 3i, and -4, oriented in the counterclockwise direction, then show that $\left|\int_C (e^z \overline{z})dz\right| \leq 60$.
- (g) If the real part of entire function f is bounded above, then show that f is a constant map.
- (h) Find the Laurent series expansion of $\frac{1}{(z-1)(z-3)}$ in 1 < |z| < 3.
- (i) Evaluate $\int_{|z|=1} \frac{\sin z}{z} dz$.

Q.3

- (a) Let $f: \mathbb{C} \to \mathbb{C}$ be f(0) = 0 and $f(z) = \frac{\mathbb{Z}^2}{z}$ if $z \neq 0$. Is the function f differentiable at 0? Are the Cauchy-Riemann equations satisfied at (0,0)? Justify.
- (b) If z and w are nonzero complex numbers, then show that $\arg(zw) = \arg z + \arg w$. [6] Also, prove that $\arg \overline{z} = \arg z^{-1} = -\arg z$.
- (b) Let f = u + iv be defined on D, and let $z_0 = x_0 + iy_0 \in D$. Show that f is continuous at z_0 if and only if both u and v are continuous at (x_0, y_0) .
- (c) Let $N(z_0, R)$ be the disc of convergence of the power series $S(z) = \sum_{n=0}^{\infty} a_n (z z_0)^n$. [6] If C is a contour lying in $N(z_0, R)$ and if g is a continuous function on C, then show that $\int_C g(z)S(z)dz = \sum_{n=0}^{\infty} a_n \int_C g(z)(z-z_0)^n dz$
- that $\int_C g(z)S(z)dz = \sum_{n=0}^{\infty} a_n \int_C g(z)(z-z_0)^n dz$. (d) Let f be analytic on a domain D. If f'(z) = 0 for all $z \in D$, then show that f is a [6] constant map.
- (d) Let $u: \mathbb{R}^2 \{0\} \to \mathbb{R}$ be $u(x,y) = y/(x^2 + y^2)$. Show that u is harmonic. Find an [6] analytic function on $\mathbb{C} \{0\}$ whose real part is u.
- (e) If P is a polynomial of degree $n \geq 1$, then show that there is $z_0 \in \mathbb{C}$ such that [6] $P(z_0) = 0$.
- (f) If a function f is analytic and not constant in on a domain D, then show that |f| has [6] no maximum value in D.
- (f) If $f(z) = \pi \exp(\pi \overline{z})$ and C is the boundary of the square with vertices at the points [6]. 0, 1, 1 + i and i, the orientation of C being in the counterclockwise direction, then evaluate $\int_C f(z)dz$.
- (g) Let z_0 be an isolated singularity of f. Prove that z_0 is a pole of f order m if and only if there is a function φ which is analytic at z_0 , $\varphi(z_0) \neq 0$ and $f(z) = \frac{1}{(z-z_0)^m} \varphi(z)$ for all z in some deleted neighborhood of z_0 .
- (h) Evaluate $\int_{-\pi}^{\pi} \frac{d\theta}{1+\sin^2\theta}$. [6]
- (h) If f is analytic on the open disc $N(z_0, R)$, then show that f has the power series [6] representation $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$ for all $z \in N(z_0, R)$.

