No. of printed pages: 2

33

SARDAR PATEL UNIVERSITY

M.Sc. (Mathematics) Semester - I Examination (NC) Thursday, 19th April, 2018 PS01CMTH04, Linear Algebra

Time: 10:00 a.m. to 01:00 p.m.

Maximum marks: 70

Note:

- 1. Figures to the right indicate marks of the respective question.
- 2. Assume standard notations wherever applicable.

Q-1	Write the question	number and	appropriate option	number	only for	each	question
-----	--------------------	------------	--------------------	--------	----------	------	----------

[8]

- 1. Let V be a vector space with dim V=4. Then dim $\hat{V}=$ ____
 - (a) 2
- (b) 4
- (c) 8
- (d) 16
- 2. Dimension of the vector space \mathbb{C}^2 over the field \mathbb{C} is _____.
- (b) 2
- (d) infinite
- 3. Let V be a finite dimensional vector space over F. If $T \in A(V)$ is one-one, then T is _____.
 - (a) singular
- (b) onto
- (c) I
- (d) nilpotent
- 4. Let $T:\mathbb{R}^2\to\mathbb{R}^2$ be defined as T(x,y)=(y,-x). Then minimal polynomial for T is ____
- (b) $1 + x^2$
- (c) $1 x^2$
- (d) $1 + x + x^2$
- 5. Let $V = \mathbb{R}^3$ and $T \in A(V)$. If T = 0, then the invariants of T are ____
- (b) 2, 1
- (c) 3.1
- (d) 1, 1, 1
- 6. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by $T(x_1, x_2, x_3) = (0, x_1, x_2), \forall (x_1, x_2, x_3) \in \mathbb{R}^3$. Then T is _____.
 - (a) one-one
- (b) onto
- (c) nilpotent
- (d) regular
- 7. Let $A \in M_n(F)$ be nilpotent. Then $\det(A) = \underline{\hspace{1cm}}$
- (b) 0
- (c) $\neq 0$
- (d) n
- 8. Let $A \in M_n(\mathbb{C})$ with $\det(A) = -1$. Then $\det(A^{-1}) = \underline{\hspace{1cm}}$.
 - (a) -1
- (b) 1
- (c) i
- (d) -i

Q-2 Attempt Any Seven of the following:

- (a) Define internal direct sum of vector spaces.
- (b) For subspaces V_1 and V_2 of a vector space V over F, show that $V_1 \cup V_2$ need not be a subspace of V.
- (c) Let V be a finite-dimensional vector space over F and $S,T\in A(V)$. Show that $r(TS) \le r(T)$.
- (d) Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(x, y, z) = (y 2z, z 2x, x 2y), (x, y, z) \in \mathbb{R}^3$. Find the matrix of T with respect to standard basis of \mathbb{R}^3 .
- (e) Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x,y,z) = (y,0,0). Show that T is nilpotent and hence find its invariants
- (f) Let V be a vector space over F and $S, T \in A(V)$ be nilpotent. Show that S+T is nilpotent.
- (g) Let F be a field and $A \in M_n(F)$ be regular. Then show that $\det(A) \neq 0$.
- (h) Find the symmetric matrix associated to the following quadratic form: $-y^2 - 2z^2 + 4xy + 8xz - 14yz.$
- (i) For $A, B \in M_n(\mathbb{R})$, show that tr(AB) = tr(BA).
- Q-3 (a) Let V and W be vector spaces over F of dimensions m and n respectively. Prove that $\dim \operatorname{Hom}(V, W) = mn$ over F.

[6]

[14]

(b) Let V be a finite-dimensional vector space over a field F and W be a subspace of V. Show [6] that W is also finite-dimensional and in fact dim $V/W = \dim V - \dim W$. OR. (b) Let V be a finite-dimensional vector space over F and W be a subspace of V. Show that [6] $\dim W^0 = \dim V - \dim W$, where W^0 is the annihilator of W. Q-4 (a) Let V be a vector space over F and $T \in A(V)$. If $\lambda_1, \lambda_2, \ldots, \lambda_k \in F$ are distinct character-[6] istic roots of T and v_1, v_2, \ldots, v_k are characteristic vectors corresponding to $\lambda_1, \lambda_2, \ldots, \lambda_k$ respectively, then show that v_1, v_2, \ldots, v_k are linearly independent. (b) Let V be a vector space over F and $T \in A(V)$. Show that T is invertible if and only if the [6] constant term of the minimal polynomial for T is non-zero. (b) Let V be a finite-dimensional vector space over F and $T \in A(V)$. Let $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ 6 and $\mathcal{D} = \{w_1, w_2, \dots, w_n\}$ be two bases of V over F. If B and D are matrices of T with respect to the bases \mathcal{B} and \mathcal{D} respectively, then show that \mathcal{B} and \mathcal{D} are similar matrices. [6] Q-5 (a) Let V be an n-dimensional vector space over F and $T \in A(V)$ be such that all its characteristic roots are in F. Prove that T satisfies a polynomial of degree n over F. (b) Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent. Prove that [6] the invariants of T are unique. OR (b) Let V be a finite dimensional vector space over $F, T \in A(V)$ be nilpotent such that $T^k = 0$ [6] but $T^{k-1} \neq 0$. Let $v \in V$ such that $T^{k-1}v \neq 0$. Show that $v, Tv, \dots, T^{k-1}v$ are linearly independent and that their span is a subspace of V invariant under T. Q-6 (a) For $A, B \in M_n(F)$, show that $\det(AB) = \det(A) \det(B)$. 6 i. State and prove Jacobson lemma. [4]ii. For $A, B \in M_2(\mathbb{R})$, by giving an example, show that $\det(A + B) \neq \det(A) + \det(B)$. 2 OR(b) Let F be a field of characteristic 0, V be a vector space over F and $T \in A(V)$. If $tr(T^i) = 0$ [6] for all $i \geq 1$ then show that T is nilpotent.