[38]

Sardar Patel University

M.Sc. (Mathematics) (Sem-I) (CBCS) Examination 2018; (NC) PS01CMTH03: Functions of Several Real Variables; 12/04/2018; Thursday; Time: 10.00 am to 01:00 pm Maximum Marks 70

Note: All notations and terminologies are standard; Que.1: Choose correct answer from the given choices.

(08)

- 1. Let $x = (1, -1, 2), y = (-1, 1, -2) \in \mathbb{R}^3$. Then $\langle x, y \rangle =$ (a) -2; (b) -4; (c) -6; (d) -8;
- (i) Let $x, y \in \mathbb{R}^n$. Then which of the following is true?

(b) $||x|| = \sum_{i=1}^{n} |x_i|^2$; (d) $||x|| \le \sum_{i=1}^{n} |x_i|^2$;

(a) $||x|| = \sum_{i=1}^{n} |x_i|$ (c) $||x|| \le \sum_{i=1}^{n} |x_i|$

- (ii) Let $x, y \in \mathbb{R}^n$ be orthonormal vectors. Then

(a) ||x+y|| = ||x-y|| (b) $||x+y||^3 = ||x-y||^3$; (c) $||x+y||^2 = ||x-y||^2$ (d) None.

- (iii) Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear map.
 - (a) If T is angle preserving, then T is norm preserving;
 - (b) If T is norm preserving, then T is inner product preserving;
 - (c) Both (a) and (b) are true; (d) None.
- (iv) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ such that $D_x f(a)$ exists for all $x \in \mathbb{R}^n$. Then
 - (a) $D_j f(a)$ exists $(1 \le j \le n)$ (b) f is continuous at a;
 - (c) f is differentiable at a
- (d) None;
- (v) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ such that $D_j f(a)$ exists for all $1 \leq j \leq n$. Then

 - (a) f is continuous at a (b) f is continuously differentiable at a;
 - (c) $D_x f(a)$ exists
- (d) None of these;
- (vi) Which of the following is a 3-tensor on \mathbb{R}^5 ?

 - (a) $T(x, y, z) = x_1 y_2$ (b) $T(x, y, z) = x_1 y_2 z_3$;
 - (c) $T(x, y, z) = y_1 z_2$
- (d) $T(x, y, z) = x_1 y_2 z_3$;
- (vii) The dimension of $\Lambda^4(\mathbb{R}^6)$ is
 - (a) 1296; (b) 4096; (c) 15; (d) 0;

- (viii) Let $\omega \in \Lambda^2(V)$ and $\eta \in \Lambda^3(V)$. Then
 - (a) $\omega \otimes \eta = \eta \otimes \omega$; (b) $\omega \wedge \eta = \eta \wedge \omega$;
 - (c) $\omega \wedge \eta = -\eta \wedge \omega$; (d) All are true;

Que.2: Attend any seven.

(14)

- (i) Let $x, y \in \mathbb{R}^n$. Prove that $|\langle x, y \rangle| \le ||x|| ||y||$.
- (ii) Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be continuous. Prove that f + g is continuous.
- (iii) Define derivation of $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ at a. Give an example of a function which is continuous but not differentiable at a.
- (iv) Define $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ as $f(x) = |x_1x_2|$. Prove that f is differntiable at 0. What is Df(0)?
- (v) Define $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ as $f(x) = e^{x_1}$. Find Df(0).
- (vi) Let $A \subset \mathbb{R}^n$ be open, $a \in A$, and $f : A \longrightarrow \mathbb{R}$. If f has maximum value at the point a and $D_i f(a)$ exists, then show that $D_i f(a) = 0$.
- (vii) Define directional derivative. Is it true that if directional derivatives exist, then partial derivatives also exist?
- (viii) Define alternating k-tensor. Let $T(x,y) = \frac{1}{2}(x_1y_2 x_2y_1)$ $(x,y \in \mathbb{R}^2)$. Does $T \in \Lambda^2(\mathbb{R}^2)$?
 - (ix) Define Fields and Forms.

Que.3: (A) State and prove the Polarization Identity. (06) (B) Let $A \subset \mathbb{R}^n$ be closed, $f: A \longrightarrow \mathbb{R}$ be bounded, and $\varepsilon > 0$. Then prove that the set $B = \{x \in A : o(f; x) \ge \varepsilon\}$ is closed in \mathbb{R}^n . (06)

OR

(B) Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear map. Give the definition of ||T|| and prove that $||T(x)|| \le ||T|| ||x|| \ (x \in \mathbb{R}^n)$.

Que.4: (A) If a function $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, then prove that there exists a unique linear transformation $\lambda: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ such that

$$\lim_{h \to 0} \frac{||f(a+h) - f(a) - \lambda(h)||}{||h||} = 0.$$

(B) State and prove the chain rule.

(06)

OR

(B) Define $f: \mathbb{R}^2 \to \mathbb{R}$ as $f(x) = \frac{|x_1x_2|}{||x||}$ if $x \neq 0$ and f(0) = 0. Is the function f differentiable at 0? Justify your answer. (06)

Que.5: (A) Find Df(a) using Jacobian matrix, where $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is defined as $f(x) = (\cos(x_1x_2), x_1^5 + 3x_2)$ and $a = (0, \pi/2)$. (06)
(B) Prove that continuously differentiable function is differentiable. (06)

OR

(B) Give a detailed example of a function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ such that $D_x f(0)$ exists for all $x \in \mathbb{R}^2$ but f is not continuous at 0. (06)

Que.6: (A) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable. Let $\widetilde{f}_{k*}: \Delta_{kF}(\mathbb{R}^m) \to \Delta_{kF}(\mathbb{R}^n)$ be defined as $\widetilde{f}_{k*}(\omega)(p) := \widetilde{f}_{pk}^*(\omega(f(p)))$ $(p \in \mathbb{R}^n; \omega \in \Delta_{kF}(\mathbb{R}^m))$. Then prove that \widetilde{f}_{k*} is well-defined and it is a linear map. (06) (B) Define the wedge product. Prove that it is associative. Explicitly state the results used in the proof. (06)

OR

(B) Define Alt(T). Prove that if $\omega \in \Lambda^k(V)$, then Alt(ω) = ω . (06)

/ `i • v •