No of printed pages: 2

Sardar Patel University

Mathematics

M.Sc. Semester I

Wednesday, 01 November 2017 2.00 p.m. to 5.00 p.m.

PS01CMTH01 - Complex Analysis I

Maximum	Marks:	70
MINITURE	iviai no.	70

				Maximum Marks: 70	
Q.1 (1)	Fill in the blanks. The minimum value of (a) 2	of $\{ 6-2e^{i\theta} : \theta \in \mathbb{R}\}$ is	(c) 6	(d) 8	[8]
(2)	Arg(1+i) + Arg(-1+i) (a) 0		(c) 2π	(d) $\{2n\pi:n\in\mathbb{Z}\}$	
(3)	Suppose that $\lim_{z\to z_0}$	$ f(z) = w_0 $. Then lin	$n_{z\to z_0} f(z)$		
		(b) w_0	(c) $ w_0 $	(d) none of these	
(4)	Which of the following	g functions is not an e	ntire function?		
	(a) e^{-z}	(b) e^{-z^2}	(c) e^{-z^3}	(d) $e^{\frac{1}{z}}$	
(5)	$\int_{ z =3} \frac{z^2}{z-4} dz = \underline{\qquad}$				•
	(a) $32\pi i$	(b) $16\pi i$	(c) 8π <i>i</i>	(d) none of these	
(6)	Which of the following	g is a bounded function	n on C?	•	
	(a) z	(b) z^2	(c) $\sin z$	(d) none of these	
(7)	The residue of $\frac{1-\cos z}{z^2}$	at 0 is			
	(a) 0	(b) $2\pi i$	(c) $\frac{\pi i}{2}$	(d) πi	
(8)	0 is of $\cosh(\frac{1}{z})$.				
	(a) Essential singular(b) pole	rity	(c) removable singula (d) non isolated singu	·	
(a) (b)	Attempt any Seven. Show that a complex Is it true that $Arg(zw)$ Show that $\lim_{z\to 0} \frac{\overline{z}^2}{z}$	$) = \operatorname{Arg}(z) + \operatorname{Arg}(w)?$	only if $\overline{z} = z$. Why?		[14]

- (d) Find the real and imaginary parts of e^{-z^3} .

- (e) State Morera's theorem. (f) Evaluate $\int_{|z|=1} \frac{(z-1)^2}{z^3} dz$. (g) Let D be a domain and $f:D\to\mathbb{C}$. Define antiderivative of f on D. If F and G are antiderivatives of f on D, then show that F-G is a constant map.

- (h) Find the Laurent series of $\frac{1}{(z-1)(z-2)}$ in the region 1 < |z| < 2.
- (i) Find the inverse of a bilinear transformation $w(z) = \frac{3z+4}{4z+3}$.

Q.3

- (a) Let $n \in \mathbb{N} \setminus \{1\}$. Find all the solutions of the equation $z^n = 3$. Also, find the sum and product of all these solutions.
- (b) Define argument and principal argument of a nonzero complex number. Let z_1, z_2, \ldots, z_n be [6] nonzero complex numbers. Is it true that $\arg(z_1z_2\cdots z_n)=\arg(z_1)+\arg(z_2)+\cdots+\arg(z_n)$? Justify.

(b) If $a, b \in \mathbb{C}$, then show that $|a - b| \le |a| + |b|$. Is it true that $||a| - |b|| \le |a + b|$? Justify. [6]

Q.4

- (c) Let D be a domain, and let $f:D\to\mathbb{C}$ be analytic. Show that f is a constant map if f [6] satisfies any of the following conditions. (a) \overline{f} is analytic on D. (b) f is real valued. (c) |f| is a constant map.
- (d) Let f = u + iv be defined in a neighbourhood of $z_0 = x_0 + iy_0$. If f is differentiable at z_0 , [6] then show that $u_x(x_0, y_0) = v_y(x_0, y_0)$ and $u_y(x_0, y_0) = -v_x(x_0, y_0)$. Is the converse true? Why?

(d) Define a harmonic conjugate of a harmonic function on a domain. Show that harmonic [6] conjugate of a harmonic function need not be unique. Also, show that if a function is harmonic conjugate of itself, then it is a constant map.

Q.5

- (e) Let f be an entire function. If f is nonconstant, then show that f is not bounded. Deduce [6] that z^4 is an unbounded function.
- (f) Let $C: z(t), a \leq t \leq b$, and let f be piecewise continuous on C. Define $\int_C f(z)dz$. In usual [6] notations prove that $\int_C f(z)dz + \int_{-C} f(z)dz = 0$.

(f) State Maximum Modulus Principle. Suppose that a function f is continuous on a closed [6] bounded region R and that it is analytic and not constant in the interior of R. Show that the maximum value of |f| in R occurs somewhere on the boundary of R and never in the interior.

Q.6

- (g) If f is analytic on $N(z_0, R)$, then show that f has a power series representation [6] $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$ for all $z \in N(z_0, R)$. (h) State Cauchy's Residue Theorem. Hence evaluate $\int_C \frac{z+2}{z^2-z} dz$, where C is a positively oriented
- [6] circle |z|=2. [6]

OR

(h) Evaluate $\int_0^{2\pi} \frac{\cos^2 3\theta}{5+4\cos 2\theta} d\theta$. [6]

կնկների հերթուն հեր հերթուն հերթուն հերթուն հերթուն հերթուն հերթուն հերթուն հերթուն

[160

No. of printed pages: 2

SARDAR PATEL UNIVERSITY

M.Sc. (Mathematics) Semester - I Examination

	Tuesday, 07 th N PS01CMTH0			
Time: 02:00 p.m. t			ximum marks: 70	
Note: Figures to the		s of the respective quest applicable.	ions.	
Q-1 Write the question	number and appropri	ate option number on	ly for each question.	[8]
(a) topology	on $\mathbb R$ is the smallest T_1	-topology.		
, ,	(ii) Usual		(iv) Discrete	
(b) No subset of R	with topology ha	as a limit point.		
(i) cofinite	(ii) usual	(iii) lower limit	(iv) discrete	
(c) A polynomial o	f degree defines a	a uniformly continuous f	unction on R.	
(i) 1	(ii) 2	(iii) 3	(iv) 4	
(d) Diameter of \mathbb{R}	with the metric $d(x, y)$	$=\frac{ x-y }{1+ x-y }$, $(x,y\in\mathbb{R})$, is		
(i) 1	(ii) 2	(iii) 3	(iv) ∞	
(e) is a dense	e as well as a subset of	first category in \mathbb{R} .		
(i) №	(ii) $\mathbb Z$	(iii) Q	(iv) R	
(f) subset of	a metric space need no	ot be closed.		
(i) complete	(ii) compact (iii)) countable (iv) der	rived set of a subset	
(g)topology	makes every set a com	pact topological space.		
(i) usual	(ii) cofinite	(iii) discrete	(iv) cocountable	
(h) topology	on \mathbb{R} is T_3 but not reg	ular.		
(i) usual	(ii) lower limit	(iii) discrete	(iv) indiscrete	
Q-2 Attempt Any Se	even of the following:			[14]
(a) Show that {($(a,\infty):a\in\mathbb{R}$ is a base	e for a topology on \mathbb{R} .		
(b) Find the clos	are of $\{1,2\}$ in cofinite	topology on R.		
	gy on {1, 2, 3, 4, 5, 6} m			
* * * * * * * * * * * * * * * * * * * *	•	iro an arample of an an	on subset of $\mathbb{R} \times \mathbb{R}$	

- (d) Define the term product topology. Give an example of an open subset of $\mathbb{R} \times \mathbb{R}$.
- (e) Define the term metric on a set and give an example of a metric space.
- (f) Define the term diameter of a subset of a metric space. Find the diameter of $\{2+\frac{1}{n}:n\in\mathbb{N}\}\cup\{3-\frac{1}{n}:n\in\mathbb{N}\}$ in \mathbb{R} with the usual metric.
- (g) Define the term open cover. Give an open cover of \mathbb{R} with the usual topology.
- (h) Define the term a separable topological space and show that \mathbb{R} with the usual topology is separable.
- (i) Define and give an example of a disconnected space.

Q-3 (j) Define the usual and the lower limit topologies on \mathbb{R} and prove that the lower [6] limit topology is finer than the usual topology. (k) Define interior and closure of a subset of a topological space. Show that a subset 6 A of a topological space X is open if and only if $A = A^{\circ}$. OR (k) State and prove Pasting Lemma. 6 Q-4 (l) Show that the product topology is the weakest topology on the product space 6 with respect to which the projections are continuous. (m) State and prove Cantor's Intersection Theorem 6 (m) Consider the product space $X = \prod_{i=1}^{n} X_i$. Then show that X is T_2 if and only if [6] each X_i is T_2 . Q-5 (n) Let (X, \mathcal{I}) be a topological space and (Y, \mathcal{I}_Y) be its subspace. Show that Y is 6 compact in Y if and only if Y is compact in X. (o) Show that a compact subset of a T₂-space is closed. [6] OR (o) Show that a compact metric space is totally bounded but the converse does not [6] hold. Q-6 (p) Show that a topological space X is T_3 if and only if for every open set $G \subset X$ 6 and a point $x \in G$, there exists an open set $H \subset X$ such that $x \in H \subset \overline{H} \subset G$. (q) Show that a metric space is T_4 . [6] OR

[6]

(q) Show that a continuous image of a connected space is connected.

41 [

(Continue on page-2)

					· · · · · · · · · · · · · · · · · · ·	
[73]		iday; Time- 02.00 p	al Examination 20 tions of Several F	017; Real Va	riables;	
	ė			.:		โดดใ
	Choose correct option is Let $x = (1, -1, 2)$ and is					[08]
	(a) 0	(b) 2	(c) 4	· (d)	6 .	- -
(ii)	Let $x, y \in \mathbb{R}^n$. Then $ x $	$ y-y \le 1$				January and State of the State
	(a) $ x $	(b) y	(c) $ x + y $	(d)	x - y	
, ,	(b) If T is inner produ(c) If T is norm prese	rving, then T is inner part preserving, then T is angle prving, then T is norm p	is norm preserving preserving preserving	matrix	f'(a) is	
	(a) $n \times m$	(b) $m \times mn$	(c) $mn \times m$	(d)	none	· .
(v)	Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ such	that $D_x f(a)$ exists for	all $x \in \mathbb{R}^n$. Then	• • •		
	(a) f is continuous at (b) $D_j f(a)$ exists for		(c) f is continuous(d) f is differentia			a
(vi)	Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be de	efined as $f(x) = x_1 $. T	hen	# - 		
	(a) f is differentiable (b) $D_x f(0)$ exists for		(c) f is continuou (d) $D_j f(0)$ exists		$\leq j \leq n$	*
(vii)	Let $S \in \mathcal{T}^3(V)$ and T	$\in \mathcal{T}^5(V)$. Then $S \otimes T$	belongs to	•		
	(a) $\mathcal{T}^2(V)$	(b) $\mathcal{T}^3(V)$	$\dot{(c)} \mathcal{T}^5(V)$. (d)	$\mathcal{T}^8(V)$	
(viii)	Let π_1 and π_2 be proje	ection maps on \mathbb{R}^2 . The	en $\pi_1 \wedge \pi_2 =$	45	# 1 # 1	
	(a) $\pi_1 \otimes \pi_2 - \pi_2 \otimes \pi_1$	(b) $\pi_1 \otimes \pi_2 + \pi_2 \otimes \pi_1$	(c) $\pi_1 \otimes \pi_2$	(d)	$\pi_2\otimes\pi_1$	
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)	Attempt any seven. Prove that $ x+y \le 1$ Let $f,g:\mathbb{R}^n \longrightarrow \mathbb{R}^m$ by Prove that every differ that $f:\mathbb{R}^n \to \mathbb{R}^m$ be defined by Let $f:\mathbb{R}^n \to \mathbb{R}^m$ be defined as $f:\mathbb{R}^n \to \mathbb{R}^m$ be defined as $f:\mathbb{R}^n \to \mathbb{R}^n$ and $f:\mathbb{R}^n \to \mathbb{R}^n$ be defined as $f:\mathbb{R}^n \to \mathbb{R}^n$ and Define an inner product that $f:\mathbb{R}^n \to \mathbb{R}^n$ be defined as $f:\mathbb{R}^n \to \mathbb{R}^n$.	be continuous at a . Proventiable function is concentiable function is confiferentiable at a . Provend $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at a . Provend $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at a .	ntinuous. $f(x) = e^{x_1}$. Find Df e that each $f^i : \mathbb{R}^n$ entiable at a . Prove that $D_x f(0)$ exist be	f(a). $\rightarrow \mathbb{R}$ is of that D .	$\begin{array}{l} ext{differentiable} \ ext{sw} f(a) = sD \end{array}$	$P_x f(a)$.

Q.3		[6]
(a)	Define the inner product on \mathbb{R}^n . Then state and prove the polarization identity.	[6]
(b)	Let $A \subset \mathbb{R}^n$, let $f: A \longrightarrow \mathbb{R}$ be a bounded function, and let $a \in A$. Then prove that f is	igl
	continuous at a iff $o(f; a) = 0$.	[6]
	m OR	
(b)	Let $A \subset \mathbb{R}^n$ be closed, let $f: A \longrightarrow \mathbb{R}$ be a bounded function, and let $\varepsilon > 0$. Then prove	[0]
	that the set $B = \{x \in A : o(f; x) \ge \varepsilon\}$ is closed in \mathbb{R}^n .	[6]
Q.4		
	State and prove the chain rule.	[6]
(b)	Let $f,g:\mathbb{R}^n\longrightarrow\mathbb{R}$ be differentiable at a and $g(a)\neq 0$. Then prove that $\frac{f}{g}$ is differentiable	
	at a .	[6]
	OR	Н
(b)	Define $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ as $f(x) = x_1 \sqrt{ x_2 }$ $(x \in \mathbb{R}^2)$. Does $Df(0)$ exist? If not, then why? If	- 7
` '	yes, then find it.	[6]
Q.5	At the control of the	1
(a)	Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be differentiable at $a \in \mathbb{R}^n$, let $1 \leq i \leq m$, and let $1 \leq j \leq n$. Then prove	
` '	that the $(j,i)^{th}$ -entry of the Jacobian matrix $f'(a)$ is exactly the j^{th} -entry of the Jacobian	5 .
	$\operatorname{matrix} f^{i'}(a).$	[6]
(b)	Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be differentiable at $a \in \mathbb{R}^n$. Then prove that $D_x f(a) = Df(a)(x)$ and	ii
	$D_{x+y}f(a) = D_xf(a) + D_yf(a).$	[6]
•	$ ho \sim OR$	
(b)	Define $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ by	
. ,	\cdot	
	$f(x) = \begin{cases} \ x\ ^2 \sin(\frac{1}{\ x\ }) & \text{(if } x \neq 0) \\ 0 & \text{(if } x = 0) \end{cases}$	
		[e]
	Is f differentiable at 0? Justify your answer.	[6]
Q.6		[a]
	Let $S \in \mathcal{T}^k(V)$ such that $\mathrm{Alt}(S) = 0$ and $T \in \mathcal{T}^\ell(V)$. Prove that $\mathrm{Alt}(S \otimes T) = 0$.	[6]
(b)	Let V be a vector space with dimension n and $k \in \mathbb{N}$ such that $k < n$. Prove that the	i Teli
	dimension of $\Lambda^k(V)$ is $\frac{n!}{k!(n-k)!}$.	[6]
	OR_{\sim}	
(b)	Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be differentiable. Define the map $f_{k*}: \Delta_{kF}(\mathbb{R}^m) \to \Delta_{kF}(\mathbb{R}^n)$ and prove	
	that it is a linear map.	[6]

THE END

[8]

[14]

Time: 02:00 p.m. to 05:00 p.m.

Maximum marks: 70

SARDAR PATEL UNIVERSITY

M.Sc. (Mathematics) Semester - I Examination Thursday, 9th November, 2017 PS01CMTH04, Linear Algebra

Note:			right indicate marks ard notations wherev	of the respective quester applicable.	stion.
Q-1 C	hoose the r	nost appr	opriate option for eac	ch of the following que	estions:
1.	The dimer	sion of th	e vector space \mathbb{C}^3 over	er R is	
	(a) 6		(b) 4	(c) 3	(d) infinite
2.	Let W be dim $W^0 =$	a subspac 	e of a vector space V	over F . If dim $V = 5$	5 and dim $W = 2$, then
	(a) 5		(b) 3	(c) 2	(d) 0
	mial of T i	s			n the minimal polyno-
	(a) $p(x) =$	\boldsymbol{x}	(b) $p(x) = x^2$	(c) $p(x) = x^3$	(d) $p(x) = 0$
				be right invertible. I	
	(a) S is sin	ngular	(b) S is regular	(c) S is onto (d)) nothing can be said
5.	Let $T: \mathbb{R}^2$	$ ightarrow \mathbb{R}^2$ be	linear and nilpotent	with invariants 1, 1. T	Then T is $_{}$.
	(a) regular	•	(b) singular	(c) I	(d) 0
6.	Let V vect	or space of	over F and $T \in A(V)$) be nilpotent. Then I	T+T is
*	(a) nilpote	ent	(b) singular	(c) regular	(d) none of these
7.	Let $A \in M$	$f_n(F)$ be r	ilpotent. Then $tr(A)$	· =	
	(a) 1		(b) 0	(c) -1	(d) n
8.	Let F be a	field, $A \in$	$\in M_n(F)$ and $\alpha \in F$,	$\alpha \neq 0$. Then $\det(\alpha A)$	=
	(a) $\alpha^n \det$	(A)	(b) $\alpha \det(A)$	(c) $\frac{\det(A)}{\alpha}$	(d) $\frac{\det(A)}{\alpha^n}$
Q-2 At	tempt An	y Seven	of the following:		

- (a) Show that $v_1 = (1, -1, 2)$, $v_2 = (2, 0, -5)$, $v_3 = (8, -2, -11)$ are linearly dependent over R.
- (b) Show that if U_1 and U_2 are subspaces of a vector space V over a field F, then $U_1 \cap U_2$ is also a subspace of V.
- (c) Let V be a finite dimensional vector space over a field F and $S, T \in A(V)$. If S is regular then show that T and $S^{-1}TS$ satisfy the same polynomial $p(x) \in F[x]$.
- (d) Define $T:\mathbb{R}^3 \to \mathbb{R}^3$ by $T(x,y,z)=(y+z,x+z,x+y), \ (x,y,z)\in\mathbb{R}^3.$ Find the matrix of T with respect to standard basis of \mathbb{R}^3 .
- (e) Define nilpotent linear transformation on a vector space. Show that $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (0, x, y) is nilpotent.
- (f) Define invariant subspace of a vector space under a linear transformation. Show that if $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by T(x,y) = (x+y,x+y), for all $(x,y) \in \mathbb{R}^2$, then $W = \{(x, x) \mid x \in \mathbb{R}\}$ is invariant under T.

- (g) Let F be a field and $A \in M_n(F)$ be regular. Then show that $\det(A^{-1}) = \frac{1}{\det(A)}$.
- (h) Find the symmetric matrix associated to the quadratic form: $x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 = 0$.
- (i) For $A, B \in M_n(\mathbb{R})$, show that tr(A+B) = tr(A) + tr(B).
- Q-3 (a) Let V be a finite-dimensional vector space over a field F and W be a subspace of V. [6] Show that W is also finite-dimensional and in fact $\dim V/W = \dim V \dim W$.
 - (b) Show that internal direct sum of vector spaces is isomorphic to external direct sum. [6]
 - (b) Let U and V be vector spaces over F and T be a homomorphism of U onto V with kernel W. Show that V is isomorphic to U/W.
- Q-4 (a) Let V be a vector space over F and $T \in A(V)$. Show that T is regular if and only if the constant term of the minimal polynomial for T is non-zero. [6]
 - (b) Let V be a finite dimensional vector space over F and $S, T \in A(V)$. Show that $r(TS) \leq r(T)$ and $r(ST) \leq r(T)$. Further if S is regular then show that r(ST) = r(TS) = r(T).

OR

- (b) If V is an n-dimensional vector space over F, then show that A(V) and $M_n(F)$ are isomorphic as algebras over F.
- Q-5 (a) Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent. Prove that the invariants of T are unique.
 - (b) Let V be a finite dimensional vector space over F and $T \in A(V)$ be such that all the characteristic roots of T are in F. Show that there exists a basis of V with respect to which the matrix of T is upper triangular.

OR

- (b) Let V be a finite dimensional vector space over $F, T \in A(V)$ and W be a subspace of V invariant under T. Let $\overline{T} = V/W \to V/W$ be defined by $\overline{T}(v+W) = Tv+W$. Show that $\overline{T} \in A(V/W)$ and \overline{T} satisfies every polynomial in F[x] satisfied by T.
- **Q-6** (a) For $A, B \in M_n(F)$, show that $\det(AB) = \det(A) \det(B)$. [6]
 - (b) Show that if any two rows of $A \in M_n(F)$ are equal then det(A) = 0. Is the converse true? Justify your answer. [6]

OR

- (b) i. State and prove Cramer's rule. [4]
 - ii. Find the symmetric matrix associated with the following quadratic form: $9x_1^2 x_2^2 + 4x_3^2 + 6x_1x_2 8x_1x_3 + 2x_2x_3.$ [2]

	(172)	SEAT No.	1200	No of printed pages: 2	
		Sardar Patel			
	, ,	, PS01CMTH05, Me		-	
	Saturday,	11 th November, 201	7; 02.00 p.m. to 05		
3 . T. /	(1) 3.T		1 1 (11) 731	Maximum Marks: 70	
Note:	(1) Notations and te	rminologies are stan	dard; (11) Figures to	the right indicate marks.	
Q.1	Answer the followin	g.			[8]
	The order of differen		$(x^3(y')^2 = 0)$ is		
*	(A) 1	(B) 2		(D) 0	
2.	The set of singular I	points of $xy'' + xy'$	+y=0 is		
	$(A) \{0\}$	(B) φ	(C) {1}	(D) none of these	
3.	$\int_{-1}^{1} J_1(x) dx =$			•	
	$ \begin{array}{l} J_{-1} x_1(x) dx - \\ (A) \sqrt{\pi} \\ \int_{-1}^{1} x^2 P_3(x) dx = \end{array} $	(B) 0	(C) -1	(D) none of these	
4.	$\int_{-1}^{1} x^2 P_3(x) dx =$				
	(A) 0	(B) $\frac{2}{15}$	(C) $\frac{4}{15}$	(D) none of these	
5.	Which of the follows	ing is an integrating	factor of $ydx - xdy$	y`?´	
	$(A) \frac{1}{n}$	(B) $\frac{1}{x}$	(C) $\frac{1}{v^2}$	(D) none of these	
6.	Which one is homog		y		
•	(A) $xdx + ydy + z$	ydz = 0			
	(B) $(x^2+1)dx+($	$y^2 + 1)dy + (z^2 + 1)$)dz=0		
	(C) $xydx + yzdy +$	-zxdz=0		,	
	(D) none of these			•	
7.	$F(1,\frac{1}{5};\frac{1}{5};-2) =$	(D) 0	(a)	(=)	
	(A) 1	(B) 3	(C) -1	(D) none of these	
8.	$F(\alpha, \beta; \gamma; 0)$ equals	(D) 0	(α) αβ	(T) 1	
	(A) -1	(B) _. 0	(C) $\frac{\alpha\beta}{\gamma}$	(D) 1	
Q.2	Attempt any seven	.;			[14]

- (a) Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{1}{(n!)^2} x^n$.
- (b) Verify the analyticity of $xy'' (\cos x 1)y' + xy = 0$ at 0.
- (c) Show that $J_n(x) = (-1)^n J_n(-x)$ where $n \in \mathbb{Z}$.
- (d) Show that $\Gamma(x+1) = x\Gamma(x), x > 0$.
- (e) State Fourier-Legendre expansion theorem.
- (f) State Picard's theorem.
- (g) Find a partial differential equation by eliminating a and b from z = ax + by.
- (h) Show that $F(\alpha, \beta; \beta; x) = (1 x)^{-\alpha}$.
- (i) Find radius of convergence of Gauss's hypergeometric series.

(P.T.O)

Page 1 of 2

Q.3

- [6]
- (a) Solve: $x^2y'' + \frac{3}{2}xy' \frac{1}{2}(x+1)y = 0$ near origin. (b) Classify the singularities of $(x-2)(x-1)y'' + \sin(x-2)y' + e^x(x-1)y = 0$.
- [6]

(b) Find the general solution of y'' - xy' - y = 0 in terms of power series in x.

Q.4

(a) State and prove Rodrigue's formula.

[6]

(b) Prove: $\frac{d}{dx}[x^{\alpha}J_{\alpha}(x)] = x^{\alpha}J_{\alpha-1}(x)$

6

OR (b) Show that between two consecutive positive roots of J_1 there is unique root of J_0 .

Q.5

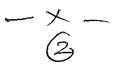
(a) Solve y' = y, y(0) = 1 using Picard's method of successive approximations.

6 6

(b) Find a necessary and sufficient condition that there exists between two functions u(x,y) and v(x,y), a relation F(u,v)=0 not involving x or y explicitly.

(b) Verify that the differential equation $(y^2 + yz)dx + (z^2 + zx)dy + (y^2 - xy)dz = 0$ is integrable and find its primitive.

Q.6


6

(a) Prove: $P_n(x) = F\left(-n, n+1; 1; \frac{1-x}{2}\right)$. (b) Solve: $(p^2 + q^2)y = qz$ using Charpit's method

[6]

(b) Explain Jacobi's method.

* * * * *

[A-61] SEAT No	No. of printed pages:	2
SARDAR PATEL UN	IVERSITV	
M.Sc. (Mathematics) Semeste		
Tuesday, 07 th Novemb		•
PS01CMTH07, Topo		
Time: 02:00 p.m. to 05:00 p.m.	Maximum marks: 7	0
Note: Figures to the right indicate full marks of the Assume standard notations wherever applicab		
Q-1 Write the question number and appropriate opti	_	n. [8]
(a) topology on $\mathbb R$ is the smallest T_1 -topology	gy.	
(i) Cofinite (ii) Usual (iii)	Lower limit (iv) Discret	е
(b) No subset of \mathbb{R} with topology has a lim	-	
(i) cofinite (ii) usual (iii)	· ·	е
(c) A polynomial of degree defines a uniform		
(i) 1 (ii) 2	(iii) 3 (iv)	4
(d) Every subset of the space is closed.		
(i) discrete (iii) indiscrete (iii) connite (iv) cocountable	е
(e) If a set has no limit point, then it is	(2)	1
(i) open (ii) dense (i	, , ,	1
(f) subset of a metric space need not be clo (i) complete (ii) compact (iii) counts		·+
(g) topology makes every set a compact top	` '	·U
(i) usual (ii) cofinite (iii)		e
(h) topology on \mathbb{R} is T_3 but not regular.	(77) 000004110401	Ŭ
(i) usual (ii) lower limit (i	ii) discrete (iv) indiscret	e
Q-2 Attempt Any Seven of the following:	(**)	[14]
(a) Define cofinite topology.		, ,
(b) Define and give an example of a <i>closed set</i> .		
(c) Give a topology on {1, 2, 3, 4, 5, 6} making it	a Tagnace	
(d) Define and give an example of a uniformly of		
(e) Define the term metric on a set and give an	- "	
(f) Define and give example of convergent seque		•
(g) Define the term open cover. Give an open co	over of \mathbb{R} with the usual topology.	
(h) Define the term a separable topological spa topology is separable.	x e and show that $\mathbb R$ with the usu	al
(i) Define and give an example of a T_2 -space.		

ui

11

raf

Q-3 (j) Define the usual and the lower limit topologies on \mathbb{R} and prove that the lower [6] limit topology is finer than the usual topology. (k) Define interior and closure of a subset of a topological space. Show that a subset [6] A of a topological space X is open if and only if $A = A^{\circ}$. OR [6] (k) State and prove Pasting Lemma. Q-4 (1) Define a bounded subset of a metric space, a totally bounded subset of a metric [6] space. Show that a totally bounded subset is bounded but the converse does not hold. (m) Define a T_1 -space. Show that a metric space is T_2 and also show that a T_1 -space [6] need not be T_2 . OR (m) Consider the product space $X = \prod_{i=1}^{n} X_i$. Then show that X is T_2 if and only if [6] each X_i is T_2 . Q-5 (n) Let (X, \mathcal{T}) be a topological space and (Y, \mathcal{T}_Y) be its subspace. Show that Y is [6] compact in Y if and only if Y is compact in X. (o) Show that a compact subset of a T_2 -space is closed. [6] OR. (o) Show that a compact metric space is totally bounded but the converse does not [6] hold. Q-6 (p) Show that a topological space X is T_3 if and only if for every open set $G \subset X$ [6] and a point $x \in G$, there exists an open set $H \subset X$ such that $x \in H \subset \overline{H} \subset G$. (q) Show that a metric space is T_4 . [6] OR (q) Show that subspace of a T_3 -space is T_3 . [6]

— × − ②

SEAT	No	
Special to the second		

[817

No of printed pages: 2

Sardar Patel University

Mathematics

M.Sc. Semester I

Wednesday, 01 November 2017

2.00 p.m. to 5.00 p.m.

		1 201CM1H21 - C01	mplex Analysis I		
				Maximum Marks: 70	
Q.1 (1)	Fill in the blanks. Let $a \in \mathbb{C}$. Then the (a) 0	minimum value of $\{ z \}$	$-a + z+a :z\in\mathbb{C}$		[8]
(2)			(0) 20	(d) None of these	
(2)	$Arg(i) + Arg(-i) = _{-}$ (a) 0	(b) π	(c) 2π	(d) $\{2n\pi:n\in\mathbb{Z}\}$	
(3)	If v and V are harmonic of the following is not	onic conjugates of a ha	rmonic function u on	a domain D , then which	
	(a) $v = V$	(b) $v_x + V_y = v_y + V_x$	$v_x = V_x$	$(d) V_{xx} + V_{yy} = 0$	
(4)	The set of singularity	of the function $\cot 2z$	is		
	(a) $\{n\pi:n\in\mathbb{Z}\}$	(b) $\{2n\pi:n\in\mathbb{Z}\}$	(c) $\{\frac{n\pi}{2}:n\in\mathbb{Z}\}$	(d) $\{\frac{n\pi i}{2}: n \in \mathbb{Z}\}$	
(5)	$\int_{ z =1} \frac{z}{z-2} dz = \underline{\qquad}$				
	(a) 0	(b) $4\pi i$	(c) $2\pi i$	(d) $\frac{1}{\pi i}$	
(6)	Which of the following	g is a bounded function	on C?		
	(a) $\cos z$	(b) e^{-z}	(c) e^{-z^2}	(d) none of these	
<i></i>					

- (7) The Taylor series of $\frac{1}{1+z^2}$ about 2 is valid in N(2,R) if R=___
 - (a) $\sqrt{5}$
- (b) $\sqrt{7}$
- (c) $\sqrt{11}$
- (d) $\sqrt{13}$

- (8) The point 0 is a pole of $\frac{\tan z}{z^2}$ of order _
 - (a) 1
- (b) 2
- (c) 3
- (d) 4

Q.2 Attempt any Seven.

[14]

- (a) If $0 \neq \alpha \in \mathbb{C}$ and $\gamma \in \mathbb{R}$, then show that $\overline{\alpha}z + \alpha \overline{z} + \gamma = 0$ represents a line.
- (b) If $\lim_{z\to z_0} f(z) = w_0$ and $w_0 \neq 0$, then show that there is $\delta > 0$ such that |f(z)| > 0whenever $0 < |z - z_0| < \delta$.
- (c) Let $n \in \mathbb{N} \setminus \{1\}$. Find the sum of all complex numbers satisfying $z^n = 2$.
- (d) If $z \in \mathbb{C}$, then show that $\cosh^2 z \sinh^2 z = 1$.
- (e) If f is an entire function, then show that $g(z) = \overline{f(\overline{z})}$ is an entire function.
- (f) Let m and n be integers, and let $C: z(\theta) = e^{i\theta}$, $0 \le \theta \le 2\pi$. Evaluate $\int_C z^n \overline{z}^m dz$.

- (g) Let f be the function $f(z) = e^z$ and R the rectangular region $[0,1] \times [0,\pi]$. Find the points in R where u(x,y) = Re f(z) reaches its maximum and minimum values.
- (h) Find the Taylor series of $\frac{1}{z-2}$ about i.
- (i) Find the inverse of a bilinear transformation $w(z) = \frac{2z+3}{3z+2}$.

Q.3

- (a) Let f = u + iv be defined in a neighbourhood of $z_0 = x_0 + iy_0$. If the functions u_x, u_y, v_x, v_y are continuous in a neighbourhood of (x_0, y_0) and if $u_x(x_0, y_0) = v_y(x_0, y_0)$ and $u_y(x_0, y_0) = v_y(x_0, y_0)$ $-v_x(x_0, y_0)$, then show that f is differentiable at z_0 .
- (b) Define $\lim_{z\to z_0} f(z) = \infty$. If P is a polynomial of degree $n \ge 1$, then show that $\lim_{z\to\infty} P(z) = \infty$. [6]

OR

(b) Give an example of of a complex function which is differentiable at exactly one point. [6] Show that the map $g \circ f$ is differentiable at z_0 whenever f is differentiable at z_0 and g is differentiable at $f(z_0)$.

Q.4

- (c) Let U be an open subset \mathbb{C} . Let $f:U\to\mathbb{C}$ be analytic such that f'(z)=0 for all $z\in\mathbb{C}$. Can we conclude that f is a constant map? Why? If not, what condition on U implies that f is a constant map? Justify.
- (d) Let $N(z_0, R)$ be the disc of convergence of the power series $S(z) = \sum_{n=0}^{\infty} a_n (z z_0)^n$. If C[6] is a contour in $N(z_0,R)$ and g is a continuous function C, then show that $\int_C g(z)S(z)dz =$ $\sum_{n=0}^{\infty} a_n \int_C g(z) (z-z_0)^n dz$. State the results you use.

- (d) Suppose that v is a harmonic conjugate of u on a domain D. Show that f = u + iv is analytic on D. Find an analytic function f whose real part is $\frac{2xy}{(x^2+y^2)^2}$. Q.5
- (e) If a function f is analytic and nonconstant in a domain D, then show that |f| has no maximum value in D. State the results you use.
- (f) Let C: z(t), $a \leq t \leq b$, and let f be piecewise continuous on C. Define $\int_C f(z)dz$. If $f(z) = \pi \exp(\pi \overline{z})$ and C is the boundary of the square with vertices at the points 0, 1, 1+iand i, the orientation of C being in the counterclockwise direction, then evaluate $\int_C f(z)dz$.

(f) If $v:\mathbb{R}^2 \to \mathbb{R}$ is a nonconstant harmonic function, then show that v is unbounded. State carefully the results you use. Q.6

(g) Let z_0 be an isolated singularity of f. Show that z_0 is a pole of f of order m if and only if there is a function φ which is analytic at z_0 , $\varphi(z_0) \neq 0$ and $f(z) = \frac{1}{(z-z_0)^m} \varphi(z)$ for all z in some deleted neighborhood of z_0 . Also, show that if m=1, then $\operatorname{Res}_{z=z_0} f = \lim_{z \to z_0} (z-z_0) f(z)$ and if m>1, then $\operatorname{Res}_{z=z_0} f = \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)]_{|z=z_0}$.

(h) State Cauchy's Residue Theorem. Hence evaluate $\int_C \frac{\cot z}{z^4} dz$ and $\int_C \frac{\sinh z}{z^4(1-z^2)} dz$, where C is

[6] a positively oriented circle $|z| = \frac{1}{2}$. [6]

(h) State Laurent's Theorem. Find the Laurent series expansion of $\frac{1}{(z-1)(z-3)}$ about i in (all [6] the three) appropriate regions.

նննեննեն

[161 No. of printed pages: 2 SARDAR PATEL UNIVERSITY M.Sc. (Mathematics) Semester - I Examination Tuesday, 07th November, 2017 PS01CMTH22, Topology-I Time: 02:00 p.m. to 05:00 p.m. Maximum marks: 70 Note: Figures to the right indicate full marks of the respective questions. Assume standard notations wherever applicable. Q-1 Write the question number and appropriate option number only for each question. [8] (a) The _____ topology is not weaker than the ____ topology on \mathbb{R} . (i) cofinite, cocountable (iii) cocountable, lower limit (ii) usual, lower limit (iv) indiscrete, discrete (b) No subset of R with the ____ topology has a limit point. (iii) lower limit (ii) usual (c) A polynomial of degree $_$ defines a uniformly continuous function on \mathbb{R} . (ii) 2 (iv) 4 (d) Diameter of \mathbb{R} with the metric $d(x,y) = \frac{|x-y|}{1+|x-y|}$, $(x,y \in \mathbb{R})$, is _ (ii) 2 (iii) 3 $(iv) \infty$ (e) R with the _____ topology is disconnected. (i) cofinite (ii) usual (iii) lower limit (iv) cocountable (f) ____ is a dense as well as a subset of first category in R. (i) N (ii) Z (iv) \mathbb{R} (g) The _____ topology makes every set a compact topological space. (ii) cofinite (iii) discrete (iv) cocountable (h) A ____ space is separable. (i) compact (ii) Hausdorff (iii) connected (iv) second counrable Q-2 Attempt Any Seven of the following. [14] (a) Show that $\{(a, \infty) : a \in \mathbb{R}\}$ is a base for a topology on \mathbb{R} . (b) Find the closure of \mathbb{N} in cofinite topology on \mathbb{R} . (c) Show that a constant map is always continuous. (d) Let (X,d) be a metric space, $A \subset X$ and $x \in X$. If d(x,A) = 0, then show that $x \in \overline{A}$ (e) Show that the discrete topology on $\mathbb R$ makes it disconnected. (f) Mention a topology on N which makes it a compact space. (g) Show that a compact subset of R is bounded. (h) Define the term a $separable\ topological\ space$ and show that $\mathbb R$ with the cocountable topology is not separable. (i) State Baire's Category theorem.

Page 1 of 2

Q-3 (j) Let (X, \mathcal{I}) be a topological space and $Y \subset X$. Define the subspace topology on [6] Y. Show that it is really a topology on Y. (k) Let $\mathcal{T}, \mathcal{T}'$ be two topologies on a set X generated by the bases $\mathcal{B}, \mathcal{B}'$ respectively. [6] Show that \mathscr{T}' is finer than \mathscr{T} if and only if for every $B \in \mathscr{B}$ and for every $x \in B$, there exists $B' \in \mathcal{B}'$ such that $x \in B' \subset B$. OR (k) Define a closed set in a topological space and prove that arbitrary intersection of [6] closed sets is closed. Also give an example to show that arbitrary union of closed sets need not be closed. Q-4 (1) Define a continuous function and a homeomorphism. Let X, Y be two topological [6] spaces and $f: X \to Y$ be a function. Show that f is continuous if and only if for each $x \in X$ and for each neighbourhood V of f(x), there is a neighbourhood U of x such that $f(U) \subset V$. (m) (i) Prove that homeomorphic image of a T_2 -space is T_2 . [6] (ii) Prove that ℝ with lower limit topology and ℝ with the upper limit topology are homeomorphic. OR (m) Let $X = \prod_{\alpha \in J} X_{\alpha}$ be a product space. Show that the product topology is the [6]weakest topology for which each π_{β} , $(\beta \in J)$, is continuous. Q-5 (n) Let X be a topological space $\{A_{\alpha}: \alpha \in J\}$ be a family of connected spaces. If [6] $\cap A_{\alpha} \neq \emptyset$, then $\cup A_{\alpha}$ is connected. (o) Let (X, \mathcal{T}) be a topological space and (Y, \mathcal{T}_Y) be its subspace. Show that Y is [6] compact in Y if and only if Y is compact in X. (o) Show that a topological space X is compact if and only if every family of closed [6] subsets of X with FIP has a nonempty intersection. Q-6 (p) Define a T_4 -space. Show that a topological space X is T_4 if and only if for every [6] open set $G \subset X$ and a closed set $E \subset G$, there exists an open set $H \subset X$ such that $E \subset H \subset \overline{H} \subset G$. (q) Show that a metric space is T_4 . 6 OR (q) State and prove Cantor's Intersection Theorem. [6]

(Continue on page-2)

that $df(p): \mathbb{R}_p^n \longrightarrow \mathbb{R}$ is linear.

Q.3	2
 (a) Let x, y ∈ Rⁿ. Then Prove that ⟨x, y⟩ ≤ x y and x + y ≤ x + y . (b) Let A ⊂ Rⁿ, let f : A → R be a bounded function, and let a ∈ A. Then prove that f is continuous at a iff a(f; a) = 0. 	[6]
continuous at a iff $o(f;a) = 0$.	[6]
OR:	
(b) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Prove that there exists an $n \times m$ matrix A such that $T(x) = xA$ $(x \in \mathbb{R}^n)$. Further, if $T: \mathbb{R}^3 \to \mathbb{R}^2$ is defined as $T(x) = (x_1 + x_3, x_1 - 2x_2 + x_3)$, then find A corresponding to T .	[6]
${f Q.4}$	[O]
 (a) If a function f: Rⁿ → R^m is differentiable at a ∈ Rⁿ, then prove that there exists a unique linear transformation λ: Rⁿ → R^m such that lim h→0 f(a+h)-f(a)-λ(h) = 0. (b) Let f, g: Rⁿ → R be differentiable at a. Prove that f + g and fg are differentiable at a. 	[6]
OR	[6]
(b) Define $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ by	
$f(x) = \begin{cases} \frac{x_1 x_2 }{\ x\ } & \text{(if } x \neq 0) \\ 0 & \text{(if } x = 0) \end{cases}$	
Discuss the differentiability of f at 0. If it is differentiable at 0, then find its derivative. Q.5	[6]
(a) Let $a = (1,0)$. Define $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ as $f(x) = (e^{x_1}, x_1 + \sin(x_2), \log(x_1) - x_2)$. Then find $f'(a)$ and $Df(a)$.	
(b) Prove that continuously differentiable function is differentiable.	[6]
OR	[6]
(b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at a . Prove that $D_x f(a)$ exists for any $x \in \mathbb{R}^n$. Moreover, find $D_x f(0)$ for the function $f: \mathbb{R}^3 \to \mathbb{R}$ defined as $f(y) = 2y_1 + y_2^2$.	[6]
(a) Define $Alt(T)$. Prove that if $T \in \mathcal{T}^k(V)$, then $Alt(T) \in \Lambda^k(V)$.	
(b) Let $\omega \in \Lambda^k(V)$ and $\eta \in \Lambda^l(V)$. Then prove that $\omega \wedge \eta = (-1)^{kl}(\eta \wedge \omega)$.	[6]
OR	[6]
b) Define "k-form" on \mathbb{R}^n . Let $f:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ be differentiable. Then prove that	[6]
$\widetilde{f}_{1*}(d\pi_i) = \sum_{j=1}^n D_j f^i \cdot d\pi_j \ \ (1 \leq i \leq m).$	

THE END

Q-

No. of printed pages: 2

SARDAR PATEL UNIVERSITY

M.Sc. (Mathematics) Semester - I Examination Thursday, 9th November, 2017 PS01CMTH24, Linear Algebra

 \mathbf{T}

Time	e: 02:00 p.m. to 05:00 p.m.	Maximum marks: 70	
Note:	 Figures to the right indicate full marks of the resp Assume standard notations wherever applicable. 	ective question.	
Q-1 F	ill up the gaps in the following:		[8]
1.	The dimension of a vector space V is 9. Then dim $\hat{V} = $	•	, ,
• ;		(d) 81	
2.	Let V be any vector space over a field F and W be its is not a subspace of V .	` ,	
	(a) $\{0\}$ (b) $\ker f$ (c) $(\ker f)$	$)\cap W$ (d) W^0	
3.	Let V be a vector space over a field F . Then is no	•	
111	(a) $F_n[x]$ (b) $\operatorname{Hom}(V, V)$ (c)		
4.	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x_1, x_2) = (-x_2, -x_2)$ characteristic roots of T are		. 4
	(a) -1 and 1 (b) 0 and 2 (c) 0 a	nd 1 (d) 1 and 1	
5.	If $T \in A(\mathbb{R}^5)$ is nilpotent with invariants 3, 1, 1, then inde		
	(a) 5 (b) 3 (c)		
6.	Let V be a vector space over F and $T \in A(V)$ be nilpo	tent. Then $T^3 + 5T^2 + 3T$ is	
	(a) regular (b) onto (c) one-or	ne (d) nilpotent	
7.	Let $A \in M_n(F)$ be regular and $\alpha \in F$, $\alpha \neq 0$. Then det(` , -	
	(a) $\frac{\alpha^n}{\det(A)}$ (b) $\frac{\alpha}{\det(A)}$ (c) $\frac{\det(A)}{\alpha^n}$		
8.	Let F be a field and $A \in M_n(F)$ be nilpotent. Then $\operatorname{tr}(A)$		
	(a) 0 (b) 1 (c) 7	(d) cannot be determined	
)2. A:	ttempt Any Seven of the following:		· {1.4}
		21	[14]
) Let U, W be subspaces of a vector space V . If $U \subset W$	* .	
(b) Let $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$. Show over \mathbb{R} .	that W is a subspace of \mathbb{R}^3	
(c) Let V be a finite dimensional vector space over F and is a characteristic root of T if and only if $T - \lambda I$ is sin		

- (d) Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(x_1, x_2, x_3) = (x_1 x_2 x_3, x_2 x_1, x_3), (x_1, x_2, x_3) \in \mathbb{R}^3$.
- Find the matrix of T with respect to standard basis of \mathbb{R}^3 .
- (e) Let V be a vector space over a field F and $T \in A(V)$. Show that $\ker(T)$ is invariant
- (f) Let V be a vector space over F and $S, T \in A(V)$ be nilpotent. Show that S + T is nilpotent.
- (g) Let $A \in M_n(F)$ be invertible. Show that $\det(A) \neq 0$.

(h) For $A, B \in M_n(\mathbb{R})$, show that tr(AB) = tr(BA). (i) Find the symmetric matrix associated with the following quadratic form: $9x^2 - y^2 + 4z^2 + 6xy - 8xz + 2yz.$ Q-3 (a) Let V be a finite-dimensional vector space over a field F. If W is a subspace of V[6] then show that W is also finite-dimensional and $\dim V/W = \dim V - \dim W$. (b) Let V and W be vector spaces over F of dimensions m and n respectively. Prove 6 that $\dim \operatorname{Hom}(V, W) = mn$ over F. OR (b) Let V be a finite dimensional vector space over F. Show that V is isomorphic to \hat{V} . 6 Q-4 (a) Let V be a vector space over F and $T \in A(V)$. Show that characteristic vectors 6 corresponding to distinct characteristic roots of T are linearly independent. (b) Let V be a vector space over F and $T \in A(V)$. Show that T is regular if and only 6 if the constant term of the minimal polynomial for T is non-zero. (b) Let V be a vector space over F, $T \in A(V)$, and $B_1 = \{v_1, v_2, \dots, v_n\}$ and $B_2 = \{v_1, v_2, \dots, v_n\}$ [6] $\{w_1, w_2, \ldots, w_n\}$ be bases of V. If $m_1(T)$ and $m_2(T)$ are matrices of T with respect to the bases B_1 and B_2 respectively, then show that $m_1(T)$ and $m_2(T)$ are similar. Q-5 (a) Let V be a finite dimensional vector space over F and $T \in A(V)$. Let p(x) =[6] $(q_1(x))^{l_1}(q_2(x))^{l_2}\cdots (q_k(x))^{l_k}$ be the minimal polynomial for T, where $q_i(x)\in F[x]$ is irreducible, i = 1, ..., k. Let $V_i = \ker(q_i(T))^{l_i}$. Show that each $V_i \neq \{0\}$. Assuming that V_i is invariant under T, show that $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$. (b) Let V be a finite dimensional vector space over $F, T \in A(V)$ be nilpotent with index [6] of nilpotence k. Let $v \in V$ such that $T^{k-1}v \neq 0$. Show that $W = L(\{v, Tv, \dots, T^{k-1}v\})$ is invariant under T and dim W = k. OR(b) Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent. Then [6] show that the invariants of T are unique. **Q-6** (a) For $A, B \in M_n(F)$, show that $\det(AB) = \det(A) \det(B)$. [6] (b) i. State and prove Jacobson lemma. [4]ii. Find the inertia In(A) = (p,q,k) of the symmetric matrix A associated with [2] the quadratic form: $11x_1^2 + 6x_1x_2 + 19x_2^2 = 80$. (b) Let F be a field of characteristic 0, V be a vector space over F and $T \in A(V)$. If [6] $\operatorname{tr}(T^i) = 0$ for all $i \geq 1$ then show that T is nilpotent.

#

No of printed pages: 2

Sardar Patel University

M.Sc. (Sem-I), PS01CMTH25, Methods of Differential Equations; Saturday, 11^{th} November, 2017; 02.00 p.m. to 05.00 p.m.

Maximum Marks: 70

Note: (i) Notations and terminologies are standard; (ii) Figures to the right indicate marks.

			the state of the s		4
Q.1	Answer the following	g.			[8]
1.	The degree of different	ential equation y'' –	$\sqrt{y'} = 0$ is		١.
	(A) 1	(B) $\frac{1}{2}$	(C) 2	(D) 4	
2.	The set of ordinary				*
		(B) φ			
	$\int_{-1}^{1} J_3(x) dx =$				
	(A) $\sqrt{\pi}$	(B) 0	(C) -1	(D) none of these	
4.	$ \begin{array}{l} \text{(A) } \sqrt{\pi} \\ \int_{-1}^{1} x^{2} P_{2}(x) dx = \\ \text{(A) } 0 \end{array} $				
	(A) 0	(B) $\frac{2}{15}$	(C) $\frac{4}{15}$	(D) none of these	
5.	Which of the followi	ing is not an integra	ting factor of ydx –	-xdy?	
		(B) $\frac{1}{xy}$			
6.	Which one is not ho				
	(A) $xdx + ydy + z$				4
		$y^2 + 1)dy + (z^2 + 1)$	dz = 0	the first explici-	
	(C) $xydx + yzdy +$	-zxdz=0		A Commence of the Commence of	
	(D) none of these		4.4	1. 1. W.	
7.	$F(-1, \frac{1}{3}; \frac{1}{3}; -1) =$				
-	(A) 1		(C) -1	(D) none of these	4,3
8.	The radius of conver				
	(A) 0	(B) 1	(C) 2	(D) $\frac{1}{2}$	
Q.2	Attempt any $seven$:			[14
(a)	Find the interval of	convergence of $\sum_{n=0}^{\infty} \tilde{n}$	$\frac{n}{n+1}x^n$.		
(b)	State Frobenius theo	orem.			

- (c) Define gamma function and find value at 1.
- (d) Find $J_{-\frac{1}{5}}(x)$.
- (e) Using Rodrgue's formula find P_0 and P_1 .
- (f) State Picard's theorem.
- (g) Find F(1, 1; 2; x).
- (h) Find a partial differential equation by eliminating F from $z = F(\frac{xy}{z})$.
- (i) State the necessary and sufficient condition that Pfaffian differential equation in three variables is integrable.

(P.T.O.)

Page 1 of 2

- (a) Solve: $x^2y'' xy' (x-1)y = 0$ near 0.
- [6] (b) Classify singularities: $x(x-1)^2(x+2)y'' + x^2(x-1)y' + (x+2)y = 0$ [6]OR
- (b) Solve: y'' + (x 1)y' + y = 0 near 1.

Q.4

- (a) State and prove orthogonality of Legendre's polynomials. [6]
- (b) Prove: $2\alpha J_{\alpha}(x) = x[J_{\alpha-1}(x) + J_{\alpha+1}(x)].$ [6]

(b) Show that $x^2 = \sum_{n=1}^{\infty} \frac{2}{\lambda_n J_3(\lambda_n)} J_2(\lambda_n x)$, $x \in (0,1)$, where $\{\lambda_n\}$ is a sequence of positive

Q.5

(a) Solve y'-2(x+xy)=0, y(0)=1 using Picard's method of successive approximations.

[6]

(b) State and prove integral representation of Gauss's hypergeometric function.

(b) Show that $F(\alpha, \beta; \beta - \alpha + 1; -1) = \frac{\Gamma(1 + \frac{\beta}{2}) \Gamma(1 + \beta - \alpha)}{\Gamma(1 + \beta) \Gamma(\frac{\beta}{2} - \alpha + 1)}$.

Q.6[6]

(a) Show that $X \cdot \text{curl} X = 0$ iff $\mu X \cdot \text{curl}(\mu X) = 0$ where X = (P, Q, R) and $P, Q, R, \mu \neq 0$ are functions of x, y and z.

(b) Solve: $(z^2 - 2yz - y^2)p + x(y+z)q = x(y-z)$. [6]

(b) Verify that the differential equation $(y^2 + z^2)dx + xydy + xzdz = 0$ is integrable and find its primitive.

No. of printed pages: 2

SARDAR PATEL UNIVERSITY M. Sc. (Semester I) Examination

Date: 14-11-2017, Tuesday Time: 2.00 To 5.00 p.m. Subject: MATHEMATICS Paper No. PS01EMTH01 - (Graph Theory - I) Total Marks: 70 1. Choose the correct option for each question: [8] For $G = K_{n,m}$, $(m, n \ge 2)$ if diam(G) = d and rad(G) = r, then (a) d = r(b) d < r(c) d > r(d) none of these (2) For $G = C_n$ with anticlockwise direction, rank(B) is (b) n-1(d) none of these (3) Let T be a spanning out-tree with root R. Then (a) $d^{+}(R) > 0$, $d^{-}(R) > 0$ (c) $d^{+}(R) = 0$, $d^{-}(R) = 0$ (b) $d^{-}(R) = 0$, $d^{+}(R) > 0$ (d) $d^+(R) = 0$, $d^-(R) > 0$ (4) If G is a simple digraph with vertices $\{v_1, v_2, ..., v_n\}$ & e edges, then $\sum_{i=1}^n d^-(v_i) =$ (a) ne (b) 2e $(d) e^2$ The chromatic number of C_{2m} ($m \in \mathbb{N}$) is (a) 2 (b) 3(c) m (d) 2mWhich of the following graphs is Hamiltonian? (a) $K_{n,1}$ (b) $K_{n, 2n}$ (c) C_n (d) P_n (7) Let G be a simple graph without isolated vertex. Then a matching M in G is (a) maximum \Rightarrow perfect (c) maximal \Rightarrow maximum (b) maximal \Rightarrow perfect (d) maximum \Rightarrow maximal (8) For which of the following graphs, $\alpha(G) = \beta(G)$? (a) K_5 (b) C_6 (c) P_5 (d) none of these Attempt any SEVEN: 2. [14] Prove: If $K_{m,n} = K_{m+n}$, then m = n = 1. (a) Prove or disprove: A regular digraph is strongly connected. (b) (c) Define adjacency matrix in a digraph. Give an example of a spanning in tree which is also a spanning out tree in a digraph. (d)

- (e) Is K₅ uniquely colorable? Why?
- (f) What is Four color problem?
- (g) Prove or disprove: The graph P_4 is isomorphic to $K_{1,3}$.
- (h) Prove or disprove: The graph $K_{2,3}$ has a perfect matching.
- (i) Prove or disprove: Every independent set is a vertex cover of the graph.

j,	(a)	Define the following with examples:	[6]
		(i) Symmetric digraph (ii) complete symmetric digraph (iii) Asymmetric digraph	
		(IV) complete asymmetric digraph	
	(b)	Prove: If G is a connected Euler digraph, then it is balanced.	[6]
	<i>a</i> .	OR	τ ,
	(b)	Obtain De Bruijn cycle for $r = 3$.	[6]
4.	(a)	Define arborescence and show that an arborescence is a tree in which every vertex other than the root has an in-degree exactly one.	[6]
	(b)	Show that the determinant of every square sub matrix of the incidence matrix A of a digraph is $1, -1$ or 0 .	[6]
		OR	
	(b)	Let G be a connected digraph with n vertices. Prove that rank of $A(G) = n - 1$.	[6]
5.	(a)	Prove: If G is Hamiltonian, then, for each $S \subset V(G)$, $c(G - S) \le S $.	[6]
	_ (b)	Prove: A connected graph G is 2-chromatic if and only if it does not contain an odd cycle.	[6]
		OR	,
	(b)	Find the Chromatic polynomial of the graph $K_{1,3}$.	[6]
ó.	(a)	Prove: If G is a bipartite graph, then $\alpha'(G) = \beta(G)$.	[6]
	(b)	Define a matching in a graph and show that every component of a symmetric difference of two matching is either a path or a cycle of even length. OR	[6]
	(b)	Define $\alpha(G)$, $\beta(G)$ and find it with the corresponding sets for $G = P_7$.	F 63
	` '	r = r = r = r.	[6]

X-X-X-X-X

SARDAR PATEL UNIVERSITY M.Sc. (Semester-I) Examination

Tues	Sday 14/11/2017 Time: 02:00 PM to 05:00 I	PM
	Subject: Mathematics Course No.PS01EMTH02	
	Mathematical Classical Mechanics	
	questions (including multiple choice questions) are to be answered in the answer book only.	
Q-1 (1)	Choose most appropriate answer from the options given. A particle is moving on a cylinder, its degrees of freedom is (a) 0 (b) 2 (c) 4 (d) can not be determined	(08)
(2)	The motion of a particle under gravity is constraint. (a) not a (b) a holonomic (c) a non-holonomic (d) conservative	
(3)	The condition for extremum of $J = \int_{x_1}^{x_2} f(y, x) dx$ is	
	(a) $\frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) = 0$ (b) $\frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) - \frac{\partial f}{\partial y} = 0$	
(4)	(c) $\frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) - \frac{\partial f}{\partial y} = 0$ (d) none of these If the Lagrangian L does not depend on q_j explicitly then is	
(5)	conserved. (a) p_j (b) h (c) \dot{p}_j (d) L Which one of the following is correct?	
(6)	(a) $\frac{\partial L}{\partial t} = \frac{dh}{dt}$ (b) $H = h$ (c) $\frac{dL}{dt} = \frac{dH}{dt}$ (d) none of these If all coordinates are non-cyclic then Routhian $R = $	
(7)	(a) H (b) L (c) $-H$ (d) 0 Pick up the incorrect statement.	
(8)	 (a) A canonical transformation is non-invertible. (b) Jacobian matrix for a canonical transformation is symplectic. (c) Inverse of a canonical transformation is canonical. (d) None of the above. [q₁, p₂] is (a) a fundamental Lagrange bracket (b) a fundamental Poisson bracket (c) a zero matrix (d) an undefined term 	,
Q-2	Answer any Seven.	(14)
(1) (2) (3) (4) (5) (6) (7) (8) (9)	Define and give an example of a rheonomic constraint. Describe constraints in Atwood's machine. What are geodesics on a unit sphere? Define generalized momentum conjugate to a generalized coordinate. Explain the meaning of Legendre transformation in brief. State principle of least action. State the transformation generated by a function of type F ₂ . Define Poisson bracket.	
(7)	Evaluate $\{p_1, q_1 + p_2\}$, notations being usual.	

Q-3

- (a) State Lagrange's equations of motion in general for and derive the form in (06) the case of velocity dependent potential.
- (b) Giving all details obtain expression of Lagrangian for spherical pendulum. (06)

OR

(b) Express kinetic energy of system in terms of generalized coordinates and velocities.

Q-4

- (a) Derive the condition for the extremum of $J = \int_{x_1}^{x_2} f(y, \dot{y}, x) dx$. (06)
- (b) Using calculus of variations discuss brachistochrone problem. (06)

OR

(b) Lagrangian of a system is given by $L = \frac{1}{2}(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{1}{r^2}$. Compute all generalized momenta and energy function. Which of them are conserved? Why?

Q-5

- (a) State Hamilton's modified principle; and derive Hamilton's equations of (06) motion from it.
- (b) Giving an example describe Routhian procedure. (06)

OR

(b) Find Hamiltonian corresponding to the Lagrangian, $L = a \dot{x}^2 + b \frac{\dot{y}}{x} + c \dot{x} \dot{y} + f y^2 \dot{x} \dot{z} + g \dot{y} - k \sqrt{x^2 + y^2}$, where a, b, c, f, g and k are constants; x, y and z are generalized coordinates.

0-6

- (a) Define fundamental Lagrange brackets. Show that they are invariant under a (06) canonical transformation.
- (b) Define infinitesimal canonical transformation. Show that symplectic (06) condition is satisfied in this case.

OR

(b) Show that the transformation, $Q = \log(1 + \sqrt{q}\cos p), P = 2\sqrt{q}(1 + \sqrt{q}\cos p)\sin p,$ is canonical.

(99)

1.

No. of printed pages: 2

SARDAR PATEL UNIVERSITY M. Sc. (Semester I) Examination

Date: 14-11-2017, Tuesday

Time: 2.00 To 5.00 p.m.

Subject: MATHEMATICS Paper No. PS01EMTH21 - (Graph Theory - I)

3	սոյեւ	. IVIPA I IIISIVAZ	**	ý*	Total Marks:	70
		Choose the co	errect option for each	question:		[8]
	(1)	For $G = K_{n,m}$, (a) $d = r$	$(m, n \ge 2)$ if diam(C) (b) $d < r$	G(G) = d and $rad(G) = r(c) d > r$	(d) none of these	
	(2)	The order of a (a) n x n	an incidence matrix of (b) (n - 1) x n	f a digraph P_n is (c) $n \times (n-1)$	(d) (n-1) x (n-1)	
	(3)	Let T be a spa (a) $d^{+}(R) > 0$ (b) $d^{-}(R) = 0$		ot R. Then (c) $d^{+}(R) = 0$, (d) $d^{+}(R) = 0$,	$d^{-}(R) = 0$ $d^{-}(R) > 0$	(a) ?
	(4)	If G is a simp	ole digraph with vertic	$ces \{v_1, v_2,, v_n\} &$	e edges, then $\sum_{i=1}^{n} d^{-}(v_i) =$	
		(a) ne	(b) e	(c) 2e	$(d) e^2$	
	(5)	The chromatical (a) 2	ic number of C_{2m} (m of C_{2m}) (b) 3	∈ N) is (c) m	(d) 2m	
	(6)	Which of the (a) K _n	following graphs is r (b) $K_{n,n}$	not Hamiltonian? (c) P _n	(d) C _n	
	(7)	(a) maximu	mple graph without is m ⇒ perfect ll ⇒ perfect	(c) maximal =	a matching M in G is ⇒ maximum 1 ⇒ maximal	
	(8)	For which of (a) K ₄	f the following graphs (b) C ₆	s, $\alpha(G) = \beta(G)$? (c) P_5	(d) none of these	(0)
2.		Attempt any	SEVEN:			[14]
	(a) (b) (c) (d)	Prove or dis Define adjace Prove or dis	m, n = Km+n, then m = prove: A regular digracency matrix in a digraprove: Every connect	aph is strongly conne aph.		
	(e) (f) (g)	Is K ₆ unique What is Fou	ely colorable? Why? or color problem? norphic graphs and gi	ve one example of it		
	(h)	Prove: If S Prove or dis	∨(G) is an indepen sprove: If K _n has a per	dent set, then V(G) - rfect matching, then	S is vertex cover of G. n is even.	

3.	` (a)	Tono ving with Campies:	567
		(i) In – degree and out- degree (ii) Symmetric and asymmetric digraph	[6]
	(b)	Trove. It d is a connected Euler digraph, then it is balanced.	[6]
	(b)	The property and the sat least two vertices $u & v \text{ with } d(u) = d(v)$.	[6]
4.	(a)	other than the root has an in-degree exactly one	[6]
	(b)	Show that the determinant of every square sub matrix of the incidence matrix A of a digraph is $1, -1$ or 0 .	[6]
	(1.)	OR .	
	(b)	Define fundamental circuit matrix in a digraph G and if B denotes the circuit matrix of G with n vertices and e edges, then prove that $rank(B) \ge e - n + 1$.	[6]
5.	(a)	Prove: If G is simple graph with $n = V(G) \ge 3 \& 2\delta(G) \ge n$, then G is Hamiltonian.	[6]
	(b)	Prove: A connected graph G is 2-chromatic if and only if it does not contain an odd cycle.	[6]
		OR	
	(b)	Find the coefficients c ₃ and c ₄ of Chromatic polynomial of the graph below:	[6]
	(a) (b)	Prove: If G is a bipartite graph, then $\alpha'(G) = \beta(G)$. State Hall's theorem and show that a large of the state of the sta	[6]
	-	State Hall's theorem and show that a k-regular bipartite graph has a perfect matching. OR	[6]
ı	(b)	Define $\alpha(G)$, $\beta(G)$ and find it with the corresponding sets for $G = C_7$.	[6]

X-X-X-X-X

SARDAR PATEL UNIVERSITY M.Sc. (Semester-I) Examination

Tueso S	day 14/11/2017 Subject: Mathematics Mathematical Clas	Time: 02:00 PM to 05:00 Course No.PS01EMTH22 ssical Mechanics	
Note: (1) All ((2) Nun	questions (including multiple choice questions) and the right indicate full marks of the respe	are to be answered in the answer book only.	
Q-1 (1) (2) (3)	The condition for extremum of $I = \int_{-\infty}^{\infty}$	grees of freedom is (d) can not be determined rigid rod is constraint. teonomic (d) conservative $(x,y) = (x,y) + (y,y) = (x,y) + (y,y) = (y,$	(80)
	(a) $\frac{\partial f}{\partial \dot{y}} = constant$	(b) $\frac{d}{dx} \left(\frac{\partial y}{\partial y} \right) = \frac{\partial y}{\partial y}$	W De
	(c) $\frac{d}{dy} \left(\frac{\partial f}{\partial y} \right) - \frac{\partial f}{\partial y} = constant$	(d) none of these	
(4)	If the Lagrangian L does not depend o	n q_j explicitly then is	
(5)	Which one of the following is not correctly which one of the following is not correctly as $\frac{\partial H}{\partial t} = \frac{dh}{dt}$ (b) $H = h$ (c) $\frac{dL}{dt} = \frac{dh}{dt}$	$\frac{dH}{dt}$ (d) none of these	
(6)	If all coordinates are cyclic then Routh (a) H (b) L (c) -	$\lim_{H \to \infty} R = \frac{1}{(d) \ 0}$	pa() (6)
(7)	Pick up the correct statement. (a) A canonical transformation is non- (b) Jacobian matrix for a canonical tra (c) Inverse of a canonical transformati (d) None of the above.	invertible. nsformation is symplectic. on is canonical.	
(8)		(b) a fundamental Poisson bracket(d) an undefined term	(14)
Q-2	Answer any Seven.	*	(14)
(1) (2) (3) (4) (5)	 Compute degrees of freedom for a sin State the condition for extremum of J = \int_{x_1}^{x_2} f(y_1, y_2,, y_n, \doty_1, \doty_2, \doty_n, \dotx) Define a cyclic coordinate. Explain the meaning of Legendre training of Legendre training of the single properties of the single proper	The pendulum: $f(x) = \frac{1}{2} \int_{0}^{\infty} dx$	
(6 (7	State Hamilton's equations of motion	in matrix torin.	
(8	3) State fundamental Poisson brackets.		(PT-0)

- Q-3 State D'Alembert's principle and derive Lagrange's equations of motion in (06) (a) general form. Giving all details obtain Lagrange's equations of motion for Atwood's machine. OR A particle is moving inside the unit circle. Express the constraints in this case in mathematical form and hence classify them. Q-4 State Hamilton's principle and hence derive Lagrange's equations from it. (a) (b) Using calculus of variations obtain geodesics on plane. (06)(06)OR Prove the law of conservation of linear momentum using Lagrangian formalism. Q-5 Derive Lagrange's equations of motion from Hamilton's equations of (06) (a) motion.
- (b) Derive Routhian equations for the system having Lagrangian $L = \frac{1}{2} (\dot{r}^2 + r^2 \dot{\theta}^2) + \frac{1}{r^2}.$ OR
- (b) Find Hamiltonian corresponding to the Lagrangian, $L = \frac{l_1}{2} (\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) + \frac{l_3}{2} (\dot{\psi} + \dot{\phi} \cos \theta)^2 Mgl \cos \theta,$ notations being usual.
- Q-6
 (a) State and prove Jacobi's identity for Poisson brackets.
 (b) Obtain symplectic condition for canonical transformation.
 (06)
 (06)
- (b) Show that the transformation, $e^Q = \frac{\sin p}{q}$, $P = q \cot p$, is canonical.