	••	••		·	
	SEAT No				
		• •	•	No of printed pages: 2	
Ľ	_55]	Sardar Patel	University	,	
		Matherr			
-		M.Sc. Sen			
		Tuesday, 11 . 10.00 a.m. to	-		
		PS01CMTH01 - Co			
				Maximum Marks: 70	
Q.1	Fill in the blanks.		•		[8]
2.3		ment of $1+i$ is			[0]
	(a) 0	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{2}$	(d) π	
(2)	Let $z \in \mathbb{C}$. Then z	$=\overline{z}$ if and only if			
	(a) z is real	(b) z is imaginary	(c) $ z = 1$	(d) $z = 0$	
(3)	Which of the follow	ving are Cauchy-Riem	ann equations in po	olar coordinates?	
	(a) $ru_r = v_\theta, rv_r =$	•	(c) $ru_{\theta} = v_r, rv_{\theta} =$	$=-u_r$	
	(b) $ru_r = -v_\theta, rv_r$	$=u_{\theta}$	(d) $ru_{\theta} = -v_r, rv_{\theta}$	$= u_r$	
(4)	Which of the follow	ving is not an entire f	unction?	•	
	(a) $\frac{1}{e^{z}}$	(b) $\frac{1}{e^{z^2}}$	(c) $\frac{1}{e^{z^2+z}}$	(d) $\frac{1}{z^2+1}$	
(5)	The value of $\int_{ z =1}^{5}$	$\frac{\sin hz}{z^4}dz$ is			
	(a) 0	(b) $\frac{\pi i}{3}$	(c) $\frac{3}{\pi i}$	(d) $\frac{5!}{2\pi i}$	
(6)	Which of the follow	ving is a bounded fun	ction?		
	(a) $\sin z + \cos z$	(b) $\cosh z$	(c) $\sinh z$	(d) None of these	
(7)	The comics $\sum_{n=0}^{\infty} n$	f.		•	

- (7) The series $\sum_{n=0}^{\infty} z^n$ converges for _____
 - (a) |z| = 1
- (b) $|z| \le 1$ (c) $|z| \ge 1$
- (d) |z| < 1

(8) 0 is ____ of $e^{\frac{1}{z}}$.

- (a) a removable singularity
- (c) a pole of order 2

(b) a pole of order 1

(d) an essential singularity

Q.2 Attempt any Seven.

[14]

- (a) If $a, b \in \mathbb{C}$, then show that $||a| |b|| \le |a b|$. (b) If $z \ne 0$, then show that $\arg(z^{-1}) = -\arg(z)$. (c) Is the set $\{z \in \mathbb{C} : |z| \le 1\}$ domain? Why? (d) Show that $\lim_{z\to 0} \frac{\overline{z}}{z}$ does not exist.

- (e) Find real and imaginary parts of $f(z) = e^{-z^3}$.
- (f) Let C be the arc of the circle |z|=2 from z=2 to z=2i that lies in the first quadrant. Show that $\left| \int_C \frac{z+4}{z^3-1} dz \right| \leq \frac{6\pi}{7}$.
- (g) State Principle of deformation of paths.
- (h) Find the Laurent series expansion of $\frac{1}{(z-2)(z-3)}$ in 2 < |z| < 3.
- (i) Find the fixed points of the bilinear transformation $w = \frac{z-1}{z+1}$.

Q.3

- (a) If z_1, z_2, \ldots, z_n are complex numbers, then show that $|\sum_{i=1}^n z_i| \le \sum_{i=1}^n |z_i|$. (b) Define n th root of a complex number. Find all $z \in \mathbb{C}$ such that $z^4 = -16$. [6]
- [6]

- (b) (1) If $z \in \mathbb{C}$, then show that $|\text{Re } z| + |\text{Im } z| \leq \sqrt{2|z|}$. [3]
 - (2) Use de Moivre's formula to derive $\cos 3\theta = \cos^3 \theta 3\cos\theta\sin^2 \theta$. [3]

Q.4

- (c) Suppose that f = u + iv be defined in an ϵ neighborhood of $z_0 = x_0 + iy_0$. If u_x, u_y , [6] v_x and v_y exist and continuous in a neighborhood of (x_0, y_0) and if Cauchy-Riemann equations are satisfied at (x_0, y_0) , then show that f is differentiable at z_0 .
- (d) Let f be analytic on a domain D. If either f is analytic on D or if |f| is constant on D, then show that f is a constant map.

(d) Define a harmonic function. Construct an analytic function whose imaginary part is $v(x,y) = e^{2x} \sin 2y - y.$

Q.5

- (e) Let f be analytic within and on a simple closed contour C, taken in the positive sense. If z_0 is any point interior to C, then show that $f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-z_0} dz$. Hence evaluate $\int_{|z|=1} \frac{\cosh^2 z}{z} dz$.
- (f) State Liouville's Theorem. Deduce Fundamental Theorem of Algebra from it. [6]

(f) If $w:[a,b]\to\mathbb{C}$ is integrable, then show that $\left|\int_a^bw(t)dt\right|\leq\int_a^b|w(t)|dt$. Also, define $\int_C f(z)dz.$

Q.6

- (g) State Taylor's Theorem. Hence find the Taylor series expansion of $\sin z$ and $\cosh z$ |6|about 0 in appropriate regions.
- (h) Evaluate $\int_0^\infty \frac{2x^2-1}{x^4+5x^2+4} dx$. State the result you use. [6]

(h) When is an isolated singularity z_0 of f called a pole? What is meant by the order of a pole? Show that 0 is a pole of $\frac{1-\cos z}{z^3}$. What is the order of this pole?

նննինների

à.

Sardar Patel University

M.Sc. Semester I Examination

Monday, 17th April 2017; 10.00 to 13.00

Subject: Mathematics; Code: PS01CMTH02; Title of Paper: Topology-I

ьu	bject. Mamonia	ores, Code. I sololi.		aximum Marks: 70)
Q.1	For each question,	write the correct optic	•		[8]
(a)	is a closed s		/91\ /0.4l	(in) [1 : n C N]	
	(i) №	(ii) Q	(111) $(0,1)$	(iv) $\{\frac{1}{n} : n \in \mathbb{N}\}$	
(b)	Boundary of	$_ \subset \mathbb{R}$ is connected.	* B		
	(i) {0.98765}	, , –	(iii) [0, 1]	(iv) $(0,1)$	
(c)	Which of the follo	owing guarantees the co	ntinuity of a function	$f: X \to Y$?	
	(i) X is discret(ii) Y is discret		(iii) $f(X)$ is comp (iv) f is one-one a	act. and onto.	
(d)	A metric space is			:	
	(i) connected	(ii) Hausdorff	(iii) compact	(iv) separable	4 - 4 - 1
(e)	is a compac	ct subset of \mathbb{R}^2 .	•		
, ,		(ii) N∩(0, 25.3)	(iii) (0, 1)	(iv) $(0,1]$	
(f)		d by $f(x) = $ is not			
(3 /		(ii) $ x $		(iv) $\sin x$	
(a)	• •	a space need not			
(3)	(i) T ₁	(ii) cocountable		(iv) indiscrete	
(h)	` '	e of normal space is nor			
. ()		(ii) complete		(iv) closed	
Λ.	• •				[14]
(Q.2	Attempt any sev	ven. (Start a new pag is only one Hausdorff to	pology on a finite set		. ,
(b)) Define and give ϵ	example of a T_1 -space.			
i la	Show that every	metric space is T_2 .	il sal function fi	$(m) = d(m, \Lambda) (m \in X)$	7)
(d)) For a subset A o	f a metric space X , show	v that the function f	$(x) = a(x, A), (x \in X)$	· /1
(e	is continuous.) State Cantor's ir	ntersection theorem.			
(f	Show that a con	pact metric space is bo	unded.		
(g) Prove that R wi	th cocountable topology tinuous function from a	is not compact.	a discrete space is co	on-
	et ant		m.		
(i) Define a second	countable space. Show	that $\mathbb R$ with the us	mal topology is seco	ond
	countable.	(1)		[Conto	l]

Q.3 (Start a new page.) (a) Define cocountable topology on a set X. Show that it is a topology. (b) (i) Define interior of a set. In a topological space X, show that $A \subset X$ is open if	[6] [3]
 A∩bd(A) = ∅. (ii) Define limit point of a set. Find all limit points of ℚ in ℝ with cocountable topology. 	[3]
OR	
(i) Show that arbitrary intersection of closed sets is closed.(ii) Give an example to show that arbitrary intersection of open sets need not be	[3] [3]
open.	•
Q.4 (Start a new page.) (c) Let $X = \prod_{i=1}^{n} X_i$ be a product of topological spaces. Show that a X is T_2 if and only	[6]
if each X_i is a T_2 -space. (d) Show that in a metric space, every convergent sequence is Cauchy. Also show that a uniformly continuous function maps a Cauchy sequence to Cauchy sequence.	[6]
OR	6 - 3
(d) Show that projections are open and continuous.	[6]
Q.5 (Start a new page.)	[d]
(a) Show that [0, 1] is compact.	[6]
(f) (i) Show that a continuous image of a compact space is compact.	[3]
(ii) Show that a closed subspace of a compact space is compact.	[3]
OR	
(f) Show that a totally bounded subset of a metric space is bounded. Also show that a compact subset of a metric space is totally bounded.	a [6]
O.C. (Ctant a new nage)	[6]
(g) Define a normal space and show that a a normal space is regular.	[6]
(h) Show that a finite product of T_3 -spaces is T_3 .	ری
OR	[6]
(h) Show that $[0,1]$ is a connected subset of \mathbb{R} .	[V]
ችተ ት ላተችተች	

SARDAR PATEL UNIVERSITY

M.Sc. (Mathematics) (**External**) Examination Thursday, 13th April 2017 10.00 am - 1.00 pm

PS01CMTH03: Functions of Several Real Variables

50				
			Total Marks: 70	4 ,
Vot	e: Notations and Terminologies are standard.		The second	
Ç	0.1 Choose correct option from given four choices. (i) Let $x = (\sqrt{2}, 1, e)$ and $y = (\sqrt{2}, 2, e)$. Then $ x $	$-y\ =$		[80]
	(a) $ x $ (b) $ y $	(c) $ x y $	(d) none	
((ii) Which of the following is true?			ð
	(a) $\lim_{x \to 0} \frac{\sin x}{x} = 0$ (b) $\lim_{x \to 0} \frac{\cos x}{x} = 1$	(c) $\lim_{x \to 0} x \cos(\frac{1}{x}) = 0$	(d) none	
(:	iii) Let $a=(2,1)$ and $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ be defined as	$f(x) = x_1 x_2$. Then Df	(a) =	
	(a) $\pi_1 + \pi_2$ (b) $2\pi_1 + \pi_2$	(c) $\pi_1 + 2\pi_2$	(d) none	
(iv) Let $a \in \mathbb{R}^n$ be fixed. Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be confi	tinuous at a. Then		
	(a) $Df(a)$ exists (b) $D_x f(a)$ exist	(c) $D_j f(a)$ exist	(d) none	í
	(v) Let $a \in \mathbb{R}^n$ and $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ such that $D_x f(a)$	a) exists for all $x \in \mathbb{R}^n$.	Then	
	(a) $D_j f(a)$ exists for all $1 \le j \le n$ (b) $Df(a)$ exists	(c) f is continuous at(d) f is continuously		
((vi) Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined as $f(x) = \sqrt{ x_1 x }$	$\overline{2}$. Then		
	(a) f is continuous only at origin(b) f is continuous	(c) f is differentiable (d) f is differentiable		
(vii) Let S and T be k -tensors on V . Then			
	(a) $S \otimes T = T \otimes S$ (b) $S - T = T - S$	(c) $S+T=T+S$ (d) none		
7)	viii) The dimension of $\mathcal{T}^6(\mathbb{R}^4)$ is			
	(a) 10 (b) 15	(c) 24	(d) 1296	
	Q.2 Attempt any seven. (i) Prove that $\langle x, y \rangle = \frac{1}{4}[\ x + y\ ^2 - \ x - y\ ^2]$ (ii) Prove that $\ x + y\ \le \ x\ + \ y\ $ $(x, y \in \mathbb{R}^n)$.			[14]
	(iii) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be linear. Prove that T is no (iv) Define the differentiability of $f: \mathbb{R}^n \to \mathbb{R}^m$ (v) Prove that every linear map is differentiable	orm preserving iff it is in at $a \in \mathbb{R}^n$. and its derivation is its	self.	
((vi) If $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ has maximum value at a and (vii) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ and $a, x \in \mathbb{R}^n$. Show that $f(x)$ viii) Let $f: (\mathbb{R}^3)^2 \longrightarrow \mathbb{R}$ be $f(x, y) = x_1 + y_2$. Defining the following property of $f(x)$ and $f(x)$ be $f(x)$ and $f(x)$ be $f(x)$ be $f(x)$ and $f(x)$ be $f(x)$ be $f(x)$ be $f(x)$ be $f(x)$ be $f(x)$ be $f(x)$ and $f(x)$ be $f(x)$ by $f(x$	$D_{sx}f(a) = sD_xf(a)(s \in$	(R).	
	(ix) Define tensor product and wedge product.		O 1' D 0\	

(Continue on Page-2)

[6]

Q.3(a) Let $x, y \in \mathbb{R}^n$. Prove that $|\langle x, y \rangle| = ||x|| ||y||$ iff x and y are linearly dependent. [6](b) Let $A \subset \mathbb{R}^n$ be closed, let $f: A \longrightarrow \mathbb{R}$ be a bounded function, and let $\varepsilon > 0$. Then prove [6]that the set $B = \{x \in A : o(f; x) \ge \varepsilon\}$ is closed in \mathbb{R}^n . (b) Define $T(x) = (x_1 + x_2, 2x_2 + x_3, x_1 - 2x_2 + 3x_3)$ $(x \in \mathbb{R}^3)$. Find 3×3 matrix A such that [6] $T(x) = xA \ (x \in \mathbb{R}^3).$ Q.4(a) If a function $f:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ is differentiable at $a\in\mathbb{R}^n$, then there exists a unique linear [6]transformation $\lambda: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ such that $\lim_{h \to 0} \frac{||f(a+h) - f(a) - \lambda(h)||}{||h||} = 0.$ (b) Let $f, g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be differentiable at $a \in \mathbb{R}^n$. Then prove that fg is differentiable at a. [6] (b) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ and $a \in \mathbb{R}^n$. Then prove that f is differentiable at a iff each component $f^i:\mathbb{R}^n\longrightarrow\mathbb{R}$ $(1\leq i\leq m)$ is differentiable at a. Moreover, in this case, show that [6] $Df(a) = (Df^{1}(a), \dots, Df^{m}(a)).$ (a) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be differentiable at $a \in \mathbb{R}^n$. Then $D_j f^i(a)$ exists for all $1 \le i \le m$ and [6] for all $1 \leq j \leq n$. Moreover, the Jacobian matrix $f'(a) = \begin{bmatrix} D_1 f^1(a) & D_2 f^1(a) & \cdots & D_n f^1(a) \\ D_1 f^2(a) & D_2 f^2(a) & \cdots & D_n f^2(a) \\ \vdots & \vdots & \cdots & \vdots \\ D_1 f^m(a) & D_2 f^m(a) & \cdots & D_n f^m(a) \end{bmatrix}$ (b) Prove that every continuously differentiable function is differentiable. [6] [6] (b) Find the derivation of $f(x) = (x_1, \sin(x_2 + x_3), x_2)$ at $a = (0, 1, \pi)$. (a) Let V be a vector space with dimension n and $k \leq n$. Prove that the dimension of $\Lambda^k(V)$ [6] (b) Let $S \in \mathcal{T}^k(V)$ such that $\mathrm{Alt}(S) = 0$ and $T \in \mathcal{T}^\ell(V)$. Prove that $\mathrm{Alt}(S \otimes T) = 0$. [6]

(b) Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be differentiable. Then prove that

 $\widetilde{f}_{1*}(d\pi_i) = \sum_{i=1}^n D_j f^i \cdot d\pi_j \quad (1 \le i \le m).$

THE END

SARDAR PATEL UNIVERSITY

M.Sc. (Mathematics) Semester - I Examination Wednesday, 19th April, 2017 PS01CMTH04, Linear Algebra

				-	DOTOMITIO.
Time:	10:00	a.m.	to	1:00	p.m.

Maximum marks: 70

Note: All the questions are to be answered in answer book only. Figures to the right indicate full marks of the respective question. Assume standard notations wherever applicable

Q-1	l F	Fill up the gaps in the	following:		
		The dimension of the		r C is	
		(a) 1	4- 5	(c) 4	(d) infinite
	2.	Let V_1 and V_2 be two subspace of V .	o subspaces of a ve	ctor space V . Then _	
		(a) $V_1 + V_2$	(b) $V_1 \cup V_2$	(c) $L(V_1 \cup V_2)$	(d) $V_1 \cap V_2$
	3.	Let V be a vector space.	ace over a field F and	$\mathrm{d}\ T\in A(V)$ be such that	at $T^2 + 5T + I = 0$.
		(a) T is regular	(b) T is singular	(c) $\det(T) = 0$	(d) T is not onto
	4.	Let V be a vector sparaterist. Then the characterist	ace over F and $T \in \mathcal{A}$	$A(V)$ be such that $0 \neq 1$	$T \neq I \text{ and } T^2 = T.$
		(a) 0 and 1 .	(b) 0 and 2	(c) 0 and 0	(d) 1 and 1
	5.	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a mial of T is	defined as $T(x_1, x_2, x_3)$	$(0, x_1, x_2)$. Then the	he minimal polyno-
		(a) $p(x) = x$	(b) $p(x) = x^2$	(c) $p(x) = 0$	(d) $p(x) = x^3$
	6.	Let V vector space of under T if	ver F, W be subspace	ces of a V and $T \in A($	V). W is invariant
		(a) T must be one-on	e (b) $T(W) = V$	(c) $T(W) \subset W$	(d) $W \subset T(W)$
	7.	Let $A \in M_n(F)$ be nil	potent. Then $det(A)$		
		(a) 1 ·		(c) 0	(d) n
	8.	Let $A, B \in M_n(F)$ for			. ,
		(a) $tr(\lambda A) = \lambda^n tr(A)$		(c) $\det(A+B) = \det(A+B)$	$A) + \det(B)$
		(b) $\det(\lambda A) = \lambda \det(A)$		(d) $\operatorname{tr}(A+B) = \operatorname{tr}(A)$	
၃-2	A	ttempt Any Seven of	the following:		·

Q-2

[14]

[8]

- (a) Check whether $v_1 = (1, 2, 1)$, $v_2 = (0, 1, 1)$ and $v_3 = (0, 0, 1)$ are linearly independent over R or not?
- (b) Let $W = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y = z\} \subset \mathbb{R}^3$. Show that W is a subspace of \mathbb{R}^3 . What is the dimension of W?
- (c) Let V be a finite dimensional vector space over a field F and $T \in A(V)$. Show that $rank(ST) \leq rank(T)$.
- (d) Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(x, y, z) = (x y + z, x 2y, x 2z), (x, y, z) \in \mathbb{R}^3$. Find the matrix of T with respect to standard basis of \mathbb{R}^3 .
- (e) Let V be a vector space over a field F and $T \in A(V)$. Show that $\ker(T)$ is invariant under T.

- (f) Let V be a vector space over F and $S, T \in A(V)$ such that S is nilpotent. Show that ST is nilpotent if ST = TS.
- (g) Show that similar matrices have same determinant.
- (h) Find the inertia of the quadratic equation $x_1 + x_2 + x_3 = 0$.
- (i) For $A, B \in M_n(\mathbb{R})$, show that tr(AB) = tr(BA).
- Q-3 (a) Let V be a finite-dimensional vector space over a field F and W be a subspace of V. [6] Show that W is finite-dimensional and $\dim V/W = \dim V \dim W$.
 - (b) Let V be a vector space and $\{v_1, v_2, \ldots, v_n\}$ be a basis of V. If $\{u_1, \ldots, u_m\}$ in V [6] are linearly independent then $m \leq n$.

OR

- (b) Let V be a vector space over F. Show that V is isomorphic to a subspace of \hat{V} . [6]
- Q-4 (a) Let \mathcal{A} be an algebra over F. Show that \mathcal{A} is isomorphic to a subalgebra of A(V) for some vector space V over F.
 - (b) Let V be a vector space over F and $T \in A(V)$. Show that characteristic vectors corresponding to distinct characteristic roots of T are linearly independent.

OR

- (b) Let V be a vector space over F and $T \in A(V)$. Show that T is regular if and only if the constant term of the minimal polynomial for T is non-zero.
- Q-5 (a) Let V be a finite dimensional vector space over F and $T \in A(V)$ be nilpotent. Then show that the invariants of T are unique.
 - (b) Let V be an n-dimensional vector space over F. If $T \in A(V)$ has all its characteristic roots in F, then show that T satisfies a polynomial of degree n in F[x].

OR

- (b) Let V be a finite dimensional vector space over F and $T \in A(V)$. Let $V = V_1 \oplus V_2$, where V_1 and V_2 are subspaces of V invariant under T. Let $T_i = T \mid_{V_i}$ and $p_i(x) \in F[x]$ be the minimal polynomial for T_i , i = 1, 2. Show that the least common multiple of $p_1(x)$ and $p_2(x)$ is the minimal polynomial for T.
- Q-6 (a) For $A, B \in M_n(F)$, show that $\det(AB) = \det(A) \det(B)$. [6]
 - (b) i. Let V be a finite-dimensional vector space over F and $S, T \in A(V)$ such that ST TS commutes with S. Show that ST TS is nilpotent. [4]
 - ii. Find the symmetric matrix associated with the quadratic form: $-y^2 2z^2 + 4xy + 8xz 14yz.$ [2]

OR

(b) Prove that the determinant of a triangular matrix is the product of its entries on the main diagonal. [6]

[8]

7. $F(1,\frac{1}{2};\frac{1}{2};\frac{1}{3}) =$ $(A) \frac{1}{3}$ (C) $\frac{1}{2}$ (D) none of these

8. $F(\alpha, \beta; \gamma; 1)$ converges if

(A) $\gamma < \alpha + \beta - 1$ (B) $\gamma > \alpha + \beta$ (C) $\gamma > \alpha - \beta$ (D) $2\alpha < 2\gamma - 1$

Q.2 Attempt any seven: [14] (a) State Frobenius theorem.

(b) Find the radius and interval of convergence of $\sum_{n=0}^{\infty} \frac{(x-1)^n}{(n+1)^{3n}}$.

(c) Are e^x and $\cos x$ ($x \in \mathbb{R}$) linearly independent? Justify.

(d) Show that between any two positive zeros of J_1 there is a zero of J_0 .

(e) Show that $P_n(x) = (-1)^n P_n(-x), n \in \mathbb{N} \cup \{0\}.$

(f) Find a partial differential equation by eliminating F from $F(x^2 + y^2) + xy = z$.

(g) Solve yzp + xzq = xy.

(h) State Kummer's formula.

(i) Show that $F(\alpha, \beta; \beta; x) = (1 - x)^{-\alpha}$.

Q.3

(a) Solve: $x^2y'' - xy' - (x-1)y = 0$ near 0.

[6]

(b) Evaluate $\Gamma(\frac{1}{2})$.

[6]

OR

(b) Prove or disprove: the function $f:(-1,1)\to\mathbb{R},\ f(x)=\frac{1}{x-1}$ is analytic at 0.

Q.4

(a) Prove: $2\alpha J_{\alpha}(x) = x[J_{\alpha-1}(x) + J_{\alpha+1}(x)]$

[6]

(b) Find the first four terms of the Fourier-Legendre expansion of the function $\begin{cases} 0, & -1 < x < 0 \end{cases}$

[6]

$$f(x) = \begin{cases} 0, & -1 \le x \le 0 \\ 1, & 0 < x \le 1. \end{cases}$$

OR

(b) State Rodrigue's formula and hence find $P_i(x)$, where i = 0, 1, 2, 3.

Q.5

- (a) Show that $X \cdot \text{curl} X = 0$ iff $\mu X \cdot \text{curl}(\mu X) = 0$ where X = (P, Q, R) and $P, Q, R, \mu \neq 0$ [6] are functions of x, y and z.
- (b) Solve y'-2(x+xy)=0, y(0)=1 using Picard's method of successive approximations. [6]
- (b) Verify that the differential equation $yzdx+(x^2y-zx)dy+(x^2z-xy)dz=0$ is integrable and find its primitive.

Q.6

- (a) State and prove Integral representation of Gauss's hypergeometric function.
- (b) Find a complete integral of $(p^2 + q^2)y = qz$ using Charpit's method.

[6]

[6]

(b) Find a complete integral of $z^2 = pqxy$ using Jacobi's method.

* * * *

ııl

SEAT No._

No of printed pages: 2

Sardar Patel University
M.Sc. Semester I Examination
Monday, 17th April 2017; 10.00 to 13.00

Subject:	Mathematics;	Code:	PS01CMTH07;	Title of	Paper:	Topology-1	
					Maxim	um Marks:	70

	For each question, writing is a open subset		number only.		[8]
, ,	(i) №	(ii) Q	(iii) (0,1)	(iv) $\{\frac{1}{n}: n \in \mathbb{N}\}$	
(b)	Boundary of ⊂	\mathbb{R} is compact.			
	(i) N	(ii) Q	(iii) Z	(iv) (0,1)	
(c)	A bijective continuou	s function $f:[0,1] \rightarrow$	Y is a homeomorphis	m if	
	(i) Y is compact (ii) Y is T_2		(iii) $f(X)$ is compactive f is constant	et.	
(d)	A metric space is	·			
	(i) complete	(ii) T ₄	(iii) compact	(iv) separable	
(e)	is a compact su				
	(i) Q	(ii) N∩[0, 25.3]	(iii) $(0,1)$	(iv) $(0,1]$	
(<i>f</i>)	$f: \mathbb{R} \to \mathbb{R}$ defined by	$f(x) = \underline{\hspace{1cm}}$ is not	uniformly continuous.		٠
	(i) x^2	(ii) $ x $	(iii) x	(iv) $\sin x$	
(g)	A finite subset of a $_$	space need not h	oe closed.		
	(i) T_1	(ii) cocountable	(iii) cofinite	(iv) indiscrete	
(h)	A subspace of				
	(i) bounded	(ii) complete	(iii) countable	(iv) closed	
(a) (b) (c) (d) (d) (e) (f) (g) (h)	Attempt any Seven. Give four distinct to Show that the lower Prove that $f(x) = x $ Show that $(A \cap B)^{\circ}$ Show that a finite set Define and give example Prove that \mathbb{R} with condition Define a second countable.	pologies on $\{a, b, c, d, l \}$ limit topology is fine $ x-2 , (x \in \mathbb{R}), l \}$ is considered as $ x-2 = A^{\circ} \cap B^{\circ}$. It is compact with every subset of $ x-2 = A^{\circ} \cap B^{\circ}$. It is bound of the finite topology is not possible.	e). Than the usual topological topology on it. ded. Tregular.	l topology is second	[14]
		•		[Contd]	

Q.3 (Start a new page.) (a) Define cofinite topology on a set X. Show that it is a topology. (b) (i) Define boundary of a set. In a topological space X, show that $A \subset X$ is open	[6] [3]
if $A \cap \operatorname{bd}(A) = \emptyset$. (ii) Define <i>limit point of a set</i> . Find all limit points of $[0, 1]$ in \mathbb{R} with cocountable topology.	[3]
OR	
(b) (i) Show that arbitrary intersection of closed sets is closed.(ii) Give an example to show that arbitrary union of closed sets need not be closed.	[3] [3]
Q.4 (Start a new page.) (c) Let $X = \prod_{i=1}^{n} X_i$ be a product of topological spaces. Prove that X_1 is homeomorphic to a subset of X .	
(d) Show that in a metric space, every convergent sequence is Cauchy. Also show that a uniformly continuous function maps a Cauchy sequence to Cauchy sequence.	[6]
OR	f - 1
(d) State and prove Cantor's intersection theorem.	[6]
 Q.5 (Start a new page.) (e) Show that [0, 1] is compact. (f) (i) Show that a continuous image of a compact space is compact. (ii) Show that a closed subspace of a compact space is compact. OR	[6] [3] [3]
(f) Show that a finite subset of a metric space is bounded. Also show that a compact subset of a metric space is bounded.	[6]
Q.6 (Start a new page.)	[6]
(g) Define a regular space and show that a regular space is Hausdorff. (h) Show that a finite product of T_3 -spaces is T_3 . OR	[6]
(h) Show that a topological space X is T_4 if and only if for every open subset U and a closed subset F satisfying $F \subset U \subset X$, there exists an open set V such that $F \subset V \subset \overline{V} \subset U$.	[6]
<u>ቝ</u> ‡ቝ‡ቝ†ቝ	