SARDAR PATEL UNIVERSITY

B.SC (CA&IT) (Regular)/M.SC (Integrated) (NC) SEM-I EXAMINATION 2016

TUESDAY, 18TH OCTOBER

10:00 AM TO 12:00 NOON

PS01F	IITO2: MATHEMATICS-I	Total Marks: 70
Q:1 (1)	Select correct options in your answer book. A matrix whose determinant is not is not equal to zero, is called a (a) singular (b) non singular	[10]
(2)	(c) Symmetric (d) none of the above. A Square matrix A is said to be symmetric if (a) $A \neq A^{T}$ (b) $A = -A^{T}$ (c) $A = A^{T}$ (d) None of these	
(3)	4(1, 2, 1) + 2(1, 3, 3) =	
(4)	Norm of the vector $u = (3, 0, 4)$ is (a) 25 (b) 7 (c) 0 (d) 5	
(5)	(a) 25 (b) 7 (c) 0 (d) 5 A closed simple path is:	
(6)	(a) cycle (b) trail (c) open path (d) none The degree of a pendant vertex is: (a) 0 (b) 1 (c) 2 (d) -1	
(7)	A spanning tree T of graph contains all the of G. (a) edges (b) regions (c) colors (d) vertices	
(8)	Chromatic number is thenumber of color required to paint graph G.	
(9)	(a) total (b) average (c) minimum (d) maximum Mode = 3(Median) - 2() (a) mean (b) Median (c) Mode (d) none of them	
(10)	Mode of 3, 7, 11, 9, 13, 1, 7, 12, 18, 6 (a) 6 (b) 7 (c) 8.5 (d) none of these	
Q:2	Answer the following in short. (Any Ten)	[12]
(1)	Write difference between matrix and determinants.	
(2)	Define a skew symmetric matrix with example.	·
(3)	If $A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 5 & 3 \\ 0 & 2 & 5 \end{bmatrix}$ then find $A + A^{T}$ and $A - A^{T}$.	
(4)	Find the degree of vertices $V=\{P_1, P_2, P_3, P_4, P_5\}$ where $E=\{(P_1, P_4), (P_1, P_2), (P_1, P_1), (P_3, P_4)\}$	
(5)	Define degree of vertex with example	
(6)	Define adjacent matrix.	
(7)	Define bridge and cut points.	
(8)	Define regular graph. Draw regular graphs of degrees 1 and 2.	
(9)		
(40)	Draw all the spanning trees of the graph:	
(10)	Define Mean.	
(11)	Define Qualitative data giving two examples.	(PTO)
(12)	Obtain median of observations 30, 15, 26, 20, 24, 27, 39, 12 and 10.	(10)

Q:3

If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ Find the product of AB and BA show that AB \neq BA.

(a)

(a)

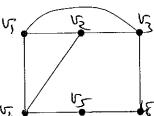
Using Cramer's rule solve the following simultaneous equations (b) 3x - 2y = 5, 5x + 4y = 1.

[4]

[6]

OR

Define the dot product and norm of vector. Let U=(5,4,1), V=(3,-4,1)Q:3


[6]

(ii) Show that U and V are orthogonal. (i) Find norm of U and V. (c)

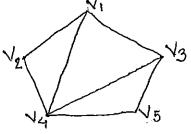
(d) $\begin{bmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \end{bmatrix}$. Then prove that $A^2 = \vec{1}$ [4]

Consider the graph G as Q:4

[5]

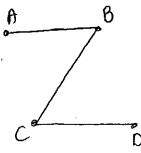
- 3 (i) Find all simple paths from v_1 to v_6
 - (ii) Find all trails from v_1 to v_6 .
 - (iii) Find d (v_1 , v_5).
 - (iv) Find all cycles in G.

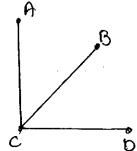
Draw the graph G corresponding to each adjacency matrix given below. (b)


[5]

OR

Find the Adjacent matrix and incidence matrix from the following graph. Q:4


[5]


(c)

Define connected graph. Determine whether or not each of the graphs is connected or not: (d)

[5]

Q:5 (a)

Define: Planar graph. Checks which of the following are planar graphs. Justify.

[5]

PTO

