(05)
 SARDAR PATEL UNIVERSIfPrinted Pages: 04

M.SC.(IT) SEMI (NC) EXAMINATION

2015

SATURDAY, $18{ }^{\text {TH }}$ APRIL

10:30 AM TO 12:30 PM

PSO1FIITO2: MATHEMATICS-I

Total Marks: 70
2:1 Choose the correct option in the following, mention the correct option with the answers in the answer book.
(1)

Chromatic number is the \qquad number of color required to paint graph G .
(a) total
(b) average
(c) minimum
(d) maximum
(2) An alternating sequence of vertices and edges in graph is called:
(a) trail
(b) cycle
(c) path
(d) degree
(3) $2(1,-2,1)+2(1,3,-3)=$ \qquad
(a) $(1,2,-4)$
(b) $(4,-2,-4)$
(c) $(4,2,-4)$
(d) $(4,2,4)$
(4) Norm of the vector $u=(-1,2,-2)$ is
(a) 9
(b) 3
(c) 1
(d) -9
(5) The degree of an isolated vertex is:
(a) 0
(b) 1
(c) 2
(d) -1
(6) In a connected map with $R=10, V=25$ then $\mathrm{E}=$ \qquad
(a) 24
(b) 30
(c) 33
(d) 38
(7) Mode of $2,3,7,6,9,6,4,8$ is
(a) 7
(b) 6
(c) 4
(d) 9
(8) Geometric mean of x, y, z is given by
(a) $\sqrt{x y z}$
(b) $\sqrt{x+y+z}$
(c) $\sqrt[3]{x y z}$
(d) none of these
(9) The degree of each vertex of the complete graph $\therefore \quad K_{8}$ is:
(a) 49
(b) -7
(c) 7
(d) 1
(10) A Square matrix A is said to be symmetric if.....
(a) $A \neq A^{\top}$
(b) $A=-A^{\top}$
(c) $A=A^{\top}$
(d) None of these

Q:2 Answer the following in short. (Any Ten)
(1)

Find the degree of vertices $V=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\}$ where $E=\left\{\left(P_{1}, P_{4}\right),\left(P_{1}, P_{2}\right),\left(P_{1}, P_{1}\right),\left(P_{3}, P_{4}\right)\right\}$
(2) Define the terms: Map and Regions.
(3) Define: Planar graph. Is below graph is planar?

(4) If $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 4 & 5 & 3 \\ 0 & 2 & 5\end{array}\right]$ then find $A+A^{\top}$ and $A-A^{\top}$.
(5) Define graph and multigraph.
(6) Explain quantitative data.
(7) Define arithmetic mean.
(8) Find x, y, z if $(2 x, 3, y)=(4, x+z, 2 z)$.
(9)

Define bridge and cut points.
(10)

Define tree and spanning trees of the graph.
Define: Incidence matrix.
(11)
(12) Obtain median of the data $2,5,6,2,4,5,8$ and 6 .

Q:3 Define the dot product and norm of vector. Let $U=(5,4,1), V=(3,-4,1)$, (i) Find norm of U and V. (ii) [5]
(a) Show that U and V are orthogonal.
(b) Let $A=\left[\begin{array}{ll}1 & 3 \\ 5 & 3\end{array}\right]$. Find $f(A)$, where $f(x)=x^{2}-4 x-12$.

OR

$\left.\begin{array}{l}\text { Q:3 } \\ \text { (c) } \\ \text { If } A\end{array}\right]\left[\begin{array}{ll}2 & 4 \\ 3 & 0 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{lll}4 & 2 & 3 \\ 7 & 1 & 5\end{array}\right]$ then prove that $(\mathrm{AB})^{\top}=\mathrm{B}^{\top} \mathrm{A}^{\top}$
(d) Using Cremer's rule solve the simultaneous equations $3 x-2 y=5,5 x+4 y=1$.

Q:4 Draw the graph G corresponding to each adjacency matrix given below.
(a)

$$
\left[\begin{array}{llll}
1 & 3 & 0 & 0 \\
3 & 0 & 1 & 1 \\
0 & 1 & 2 & 2 \\
0 & 1 & 2 & 0
\end{array}\right]
$$

(b) Consider the graph G as

(i) Find all simple paths from v_{1} to v_{6}.
(ii) Find all trails from v_{1} to v_{6}.
(iii) Find $d\left(v_{1}, v_{5}\right)$.
(iv) Find all cycles in G.

OR
Q:4 Find the incidence matrix and adjacency matrix for the following Graphs:
(c)

(d)

Define connected graph. Determine whether or not each of the graphs is connected or not:

Q:5
(a) Identify cycle or closed path that borders each region of the following map. Also find the degree of each region and chromatic number of the following maps:

(b) Define the coloring of a map. Paint the following maps with minimum number of colors:

OR

Q:5
(c) Find chromatic number for the following graphs using Welch-Powell algorithm:

(a)

(h)
(d) State Euler's formula. Verify it for the following graphs:

Q:6 Calculate Mean, Median and Mode for the following data.

weight(ibs) x	130	135	140	145	146	148	149	150	157
no. of persons(f)	3	4	6	6	3	5	2	1	1
OR									

Q:6 The marks of 40 students who attended a workshop competitive exam are as follows:

27	32	57	34	36	48	49	31	51	34
49	45	51	29	47	36	50	46	30	46
35	35	48	41	53	36	37	47	47	30
43	45	42	30	46	50	28	44	48	49

[i] Classify the above data in exclusive classes \& one of them being 40-44.
[ii] Obtain mean and median of the distribution.
$-x-$

