(05) SARDAR PATEL UNIVERSITY Inted Pages: 04

M.SC.(IT) SEM-I (NC) EXAMINATION

2015

SATURDAY, 18TH APRIL

10:30 AM TO 12:30 PM

PS0	1FIIT02: M	ATHEMATICS-I			Total Mark	s: 70					
Q:1	Choose the canswer book.	correct option in the foll	lowing, mention the	correct option	n with the answers in th	e [10]					
(1)	Chromatic nu	mber is the	number of color								
	(a) total	(b) average	(c) minimum	(d) maxi	mum .						
(2)		g sequence of vertice b) cycle (c) path		iph is called	: .						
(3)		2(1, 3, –3) =									
	(a) (1 , 2 , –4	(b) (4, -2, -4)	(c) (4,2,—4)	(d) (4,2,4)						
(4)	Norm of the v	Norm of the vector $\mathbf{u} = (-1, 2, -2)$ is									
• •	(a) 9	(b) 3		(c) 1	(d) - 9						
(5)	The degree of	f an isolated vertex is:									
	(a) 0	(b) 1	(c) 2		(d) -1						
(6)	In a connecte	In a connected map with R =10, V = 25 then E =									
	(a) 24	(b) 30	(c) 33	(c) 38						
(7)	Mode of 2, 3,	, 7, 6, 9, 6, 4, 8 is									
•	(a) 7	(b) 6	(c) 4	(d) 9	•						
(8)	Geometric me	ean of x, y, z is given b	y								
	(a) \sqrt{xyz}	(b) $\sqrt{x + y} + \frac{1}{x^2}$		kyz (d) none of these						
(9)	The degree of each vertex of the complete graph Kg (S)										
(*)	(a) 49	(b) -7	(c) 7	(d) 1						
(10)	A Square mat	rix A is said to be sym	metric if								
	(a) A ≠ A ^T	(b) A = – A	(c) A =	A^{T}	(d) None of these						
Q:2	Answer the fo	llowing in short. (Any	Ten)			[12]					
(1)	Find the degre	ee of vertices V={P ₁ , P	_{2,} P _{3,} P _{4,} P ₅ } where E	={(P _{1,} P ₄),(P _{1,} P ₂),(P _{1,} P ₁),(P _{3,} P ₄)	}					

(3) Define: Planar graph. Is below graph is planar?

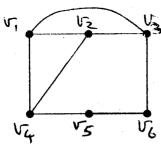
(4) If
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 5 & 3 \\ 0 & 2 & 5 \end{bmatrix}$$
 then find $A + A^{T}$ and $A - A^{T}$.

- (5) Define graph and multigraph.
- (6) Explain quantitative data.
- (7) Define arithmetic mean.
- (8) Find x, y, z if (2x, 3, y) = (4, x + z, 2z).
- (9) Define bridge and cut points.
- (10) Define tree and spanning trees of the graph.

 Define: Incidence matrix.
- (11)
- (12) Obtain median of the data 2, 5, 6, 2, 4, 5, 8 and 6.
- Q:3 Define the dot product and norm of vector. Let U=(5,4,1), V=(3,-4,1), (i) Find norm of U and V. (ii) [5]
- (a) Show that U and V are orthogonal.
- (b) Let A = $\begin{bmatrix} 1 & 3 \\ 5 & 3 \end{bmatrix}$. Find f (A), where f(x) = $x^2 4x 12$.

OR

[5]


[5]

[5]

Q:3 (c) If $A = \begin{bmatrix} 2 & 4 \\ 3 & 0 \\ 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 2 & 3 \\ 7 & 1 & 5 \end{bmatrix}$ then prove that $(AB)^T = B^T A^T$

- (d) Using Cremer's rule solve the simultaneous equations 3x 2y = 5, 5x + 4y = 1.
- Q:4 Draw the graph G corresponding to each adjacency matrix given below.

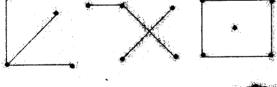
$$\begin{bmatrix} 1 & 3 & 0 \\ 3 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$


- (i) Find all simple paths from v_1 to v_6 .
- (ii) Find all trails from v_1 to v_6 .
- (iii) Find $d(v_1, v_5)$.
- (iv) Find all cycles in G.

OR

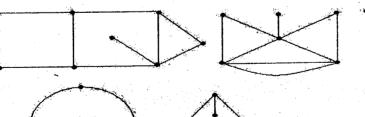
Q:4 Find the incidence matrix and adjacency matrix for the following Graphs:

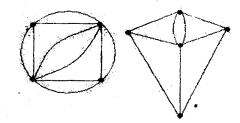
[5]


(c)

(d)
Define connected graph. Determine whether or not each of the graphs is connected or not:

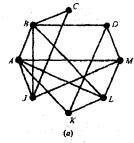
[5]

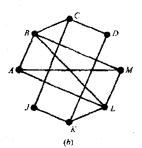

[5]



Q:5
(a) Identify cycle or closed path that borders each region of the following map. Also find the degree of each region and chromatic number of the following maps:

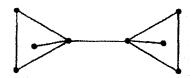
(b) Define the coloring of a map. Paint the following maps with minimum number of colors:




OR

Q:5

(c) Find chromatic number for the following graphs using Welch-Powell algorithm:



(d) State Euler's formula. Verify it for the following graphs:

[5]

Q:6 Calculate Mean, Median and Mode for the following data.

[10]

weight(lbs) X	130	135	140	145	146	148	149	150	157
no. of persons(f)	3	4	6	6	3	5	2	1	1

OR

Q:6 The marks of 40 students who attended a workshop competitive exam are as follows:

[10]

27	32	57	34	36	48	49	31	51	34
		and the second second			36				
35	35	48	41	53	36	37	47	47	30
43	45	42	30	46	50	28	44	48	49

- [i] Classify the above data in exclusive classes & one of them being 40 44.
- [ii] Obtain mean and median of the distribution.

- ×-