Seat	No.:	Signal State of the State of th
------	------	--

No. of printed pages: 2

[39]

SARDAR PATEL UNIVERSITY

M. Sc. Information Technology

Semester – I External Examinations

PS01CINT03 - Introduction to Theoretical Computer Science Monday, 24th October, 2016

Time: 10	:00 a.m	i, to 01:00 p.m.	, , , , ,	,	Max Marks: 70					
			nuesti	ons	[8]					
Q-1		enswers of following Multiple choice	, quest.							
1.		cted loop has	(B)	2 in-degree & 1 out degree						
	(A)	1 in-degree & 1 out degree		1 in-degree & 0 out degree						
	(C)	0 in-degree & 1 out degree	one cor	respondence between their e	dges and					
2.	If two graphs G and G' is having one to one correspondence between their edges and vertices sets such that incidences of edges on vertices are preserved then such graphs									
	vertic	es sets such that incluences of cage	nother							
		lled asto one a	(B)	Isomorphic graph						
	(A)	Sub graph	(D)	None of these						
	(C)	Derotated graph a relation defined on a set A, then R i	is		gs to A i.e					
3.										
	(a,a).		(B)	Symmetric Relation						
	(A)	Reflexive Relation	(D)	Relative Relation						
	(C)	Asymmetric Relation	(5)							
4.	-	valence relation is	(B)	Irreflexive, Symmetric, Transi	itive					
	(A)	Reflexive, Symmetric, Transitive	(D)	None of these						
	(C)	Reflexive, Symmetric, Atransitive case in price of water bottle during w			tion.					
5.			(B)	Secular						
	(A)	Cyclic	(D)	Regular						
	(C)	Irregular	(0)	110 Daties						
6.		_ is operation of Switching Circuit.	(B)	Serialize						
	(A)	Parallel	(D)	None Of these						
	(C)	Both (a) and (b)	ری) - (۸ h)	a and a \wedge (a \vee b) = a is known	wn as the					
7.	For every a and b in lattice A, a $V(a \land b) = a$ and a $\Lambda(a \lor b) = a$ is known as the property of the join and meet operations.									
			(B)	Commutative						
	(A)	Associative	(D)	Idempotent						
	(C)	Distributive	v one n	roblem can be proved as intra	ctable then					
8.	. In a class of problems, if any one problem can be proved as intractable then									
		he other problems are intractable.	(B)	NN						
	(A)	NP	(D)	PP						
	(C)	PN	(0)	, .	[14]					
Q-	2 An	swer the following questions (Any Se	even):		[14]					
1		re definition of Crisp Logic.								
2	W	nat is Planner Graph and Multi Graph	?							

3. 4. 5. 6.	Explain Associative Operation of Fuzzy Logic with example. With the help of truth table prove that $a \lor (b \lor c) = (a \lor b) \lor c$.											
7.	State the principle of duality.											
8.	Write Largest1 algorithm for fi				m nui	mber.						
9.	Define Tractable and Intractab	ie Pr	oble	m.								
Q-3												
[A]	30,4,000,000							[6]				
[B]									[6]			
[B]	OR											
	į									[6]		
Q-4												
[A]	, , , , , , , , , , , , , , , , , , , ,								[6]			
[B]	B] Define lattice, distributive lattice and complemented lattice. Also discuss universal upper bound and universal lower bound.									[6]		
	apper bound and aniversar low	(CI D	ounc	OR								
[B]	Explain the use of lattices in	deve	lopn	nent	of dig	gital ci	rcuit	s. Als	so dr	aw	the circuit	[6]
	diagram for $xyz + \overline{xyz} + x\overline{y}z$.											r-3
շ- 5												
[A]	Discuss long term variation, cy	clic v	ariat	ion. s	easoi	nal var	iatio	n anı	lirre	gula	r variation	[6]
	in time series.			,						PAIL	a variation	îo1
[B]	Determine the trend values for	the	follo	wing	data ı	using t	he le	ast s	quar	e me	ethod. And	[6]
	also predict the production value											
	Year		200		2008	20	10	201	2	201	4	
	Production(in thousands) 15 18 20 24 13											
[D]	Dehamina to a da falla falla			OR								
[B]	Determine trend of the follow the production value for 2015.	ing (ata	using	g Sem	ı – Av	erag	e me	thod	and	d estimate	[6]
	Year 2008 20					2010	20:	11	201	2	2013	
	Production(in thousands)	1	.5	19	,	17	2:	5	26	+	27	
}-6				1 -—	··	·						
A]	Explain Fuzzy Logic and Fuzzy So	et. W	/hat	are th	ne apr	olicatio	ns o	f fuzz	y log	ic?		[6]
B]	7 6								[6]			
	find (1) \sim T(\tilde{P}) (2) T(\tilde{P} V \tilde{Q}) (3) T($\tilde{P} \Rightarrow \tilde{Q}$)									- -		
	OR											
B]	Let fuzzy set A= $\{(x1,0.5)(x2,0.3)(x3,0)\}$ and B= $\{(x1,0.3)(x2,0.4)(x3,1)\}$ be a two fuzzy sets defined on universe of disclosure X. Perform the following operations (1) Find A U B (2) A \cap B (3) find A'.								[6]			
	0 0 (4,777 1 5 (5) 1MQ 71 . Ripini											