SARDAR PATEL UNIVERSITY

M. Sc. Information Technology (I Semester) Examination Wednesday, 5th December 2012 2.30 p.m. to 5.30 p.m.

PS01CINT03 : Introduction to Theoretical Computer Science

		Total Marks	: 70		
Q-1	Select	t appropriate answers from given list of choices.	[80]		
1.	Let X be a set with 4 elements. Then P(X) equals				
	A.	8			
	B.	12			
	C.	16			
	D.	24			
2.	AUA	x' = U is			
	A.	Associative law			
	В.	Complement law			
	C.	Idempotent law			
	D.	. Identity law			
3.	A Latti	tice (L, ≤) is called aif it has a greatest			
	element denoted by 1 and a least element denoted by 0.				
	A.	Grounded Lattice.			
	В.	Complete Lattice.			
	C.	Bounded Lattice.			
	D.	Complemented Lattice.			
4.	A decline or changes that have occurred in ice-cream sales during November				
	to February is calledvariation.				
	Α.	Trend.			
	В.	Seasonal.			
	C.	Cyclic.			
	D.	. Irregular.			
5.	A traceable problem has				
		. Efficient algorithm to solve problem.			
	В.	. Has method to solve problem			
	C.	. Has data to solve problem			
	D.	. Has graph to solve problem			
6	Maximum numbers of edges in simple graph is				
	A.	n(n-1)/2			
		n-2			
		n/n-2			
		None of those			

7	Following graph does not have edges		
	A. Euler graph		
	B. Subgraph		
	C. Regular graph		
	D. Null graph		
8	"Mary is having 90 percent attendance " is example of		
	A. Crisp logic		
	B. Fuzzy logic		
	C. Probable logic		
	D. None of these		
Q-2	Answer the following (any seven)	[14]	
1.	Explain Complement operation of fuzzy logic with example.		
2.	Explain Complement Subgraph with example.		
3.	Let A = $\{ \phi, b \}$, construct the following sets:		
8	1) $A - \phi$ 2) $\{\phi\} - A$ 3) $A \cup P(A)$ 4) $A \cap P(A)$.		
4.	What are the good characteristic of algorithm? Explain through any example		
5.	Define with an example: Partially Ordered Set(POSET)		
6.	What are intractable problems? Give example		
7.	How correctness of algorithm largest can be show where largest algorithm	1	
8.	finds largest number among given n numbers?		
9.	Construct a Truth table for (PAQ)V(PAR).		
	Define with an example: Time series		
Q-3	2.20		
A.	Define Eulerian paths and circuits. State and prove necessary and sufficient	[6]	
	condition for existence of Eulerian paths and circuits.	2 3342545	
B.	1) Draw a Hasse diagram for S ₃₀ = {1, 2, 3, 5, 6, 10, 15, 30} whose all the	[6]	
	elements are divisors of 30.	[0]	
	2) Draw a Hasse diagram of $P(A)$, $\subseteq P(A)$ for $A = \{a, b, c\}$.		
120	OR		
В.	Explain Lattice, Bounded Lattice and Distributive Lattice. Give suitable example.	[6]	
Q-4	×		
A.	Define time complexity of algorithm. Write shortest path algorithm and	[C]	
	compute its time complexity.	[6]	
В.	Explain Phrase Structure grammar with example. Also explain how phrase	[6]	
	structure grammar can be used to specify language.	(0)	
	OP		

[6] Explain properties of Binary relations with suitable example В. Q-5 Fit a Straight line trend for the following series. Estimate the value for 2014. [6] A. 2007 2005 2006 2008 2009 2004 2003 Year 80 85 95 75 65 Earnings 60 72 (Rs. Lakhs) [6] Explain components and utilities of time series with example. B. OR Fit a parabola $Y = a + b X + c X^2$ using given data: [6] B. 2011 2012 2008 2009 2010 Year 9 10 Production('000) 5 7 4 Estimate the value for 2015. Q-6 What do you mean by fuzzy set operation? Mention any five operations. [6] A. Explain Composite max-min operation with example. [6] Explain following terms: B. (i) Weighted graphs (ii) Fuzzy relations

OR

B. Write algorithm to find largest number among given n numbers with its time complexity.

(iii) Circuits
