SARDAR PATEL UNIVERSITY
M. Sc. Information Technology

Sc
Semester - I External ATKT Examinations

PS01CINT03 - Introduction to Theoretical Computer Science

 $25^{\text {th }}$ April 2015Time: 10:30 a.m. to 01:30 p.m.
Max Marks: 70

Q1. Choose the most appropriate option for each question.
[1] "Number of fish in Indian Ocean" set is
[A] Finite
[B] Countable finite
[C] Uncountably finite
[D] None of these
[2] IF $A=\{5,7,8\}$ and $B=\{2,5,9,11,12\}$, then A - B equals
[A] $\{2,5,7,8,9\}$
[B] $\{7,8\}$
[C] $\{2,5,7,8,9,11,12\}$
[D] None of these
[3] A Lattice (L, \leq) is called a \qquad if it has a greatest element denoted by 1 and a least element denoted by 0 .
[A] Grounded Lattice
[B] Complete Lattice
[C] Bounded Lattice
[D] Complemented Lattice
[4] A decline or changes that have occurred in ice-cream sales during November to February is called \qquad variation.
[A] Trend
[B] Seasonal
[C] Cyclic
[D] Irregular
[5] According to rule of product if experiment 1 has 7 outcomes and experiment 2 has 3 outcomes then there are \qquad possible outcomes.
[A] 10
[B] 11
[C] 20
[D] 21
[6] The size of set $\{\{a, b\}\}$ is \qquad .
[A] 1
[B] 2
[C] 3
[D] None of these
[7] A function $f: A \rightarrow B$ is said to be \qquad if for each $b \in B$, there exists at most one $a \in A$ with $f(x)=y$.
[A] Bijective
[B] Injective
[C] Surjective
[D] Objective
[8] If there is an edge (a, b) between vertex a and b, then vertex a is said to be \qquad to vertex b.
[A] adjacen
[B] non-terminal
[C] equal
[D] None of these

Q2. Answer the following questions (Any Seven):
a. Define with an example: Lattice; Bounded Lattice.
b. Explain rule of sum and product.
c. Explain Weighted graphs and multigraphs.
d. Draw a Truth table for $(P \wedge Q) V(P \wedge R)$.
e. Explain in brief Infinite sèts.
f. Define with an example: Binary relation.
g. What is isomorphic graph? Give an example.
h. Define and give any one example of fuzzy set.
i. State that the formula $(P \vee Q) \Rightarrow(\sim P)$ is a tautology or not by giving truth table.

Q3. Answer the following questions:

a. Explain properties of binary relations with suitable example.
b. Explain Phrase Structure grammar with example. Also explain how phrase structure grammar can be used to specify language.

OR

b. Define Algorithm. Write down the LARGEST1 algorithm to find largest value from n numbers.

Q-4 Answer the following questions:

a. Fit a Straight line trend for the following series. Estimate the value for 2015.

Year	2004	2005	2006	2007	2008	2009	2010
Earnings (Rs. Lakhs)	60	72	75	65	80	85	95

b. Explain components and utilities of time series with example.

OR
b. Fit a parabola $Y=a+b X+c X^{2}$ using given data:

Year	2011	2012	2013	2014	2015
Production(‘000)	5	7	4	9	10

Estimate the value for 2018.

Q-5 Answer the following questions:

a. Explain Boolean Algebra and Boolean Lattices in detail.
b. Write a detailed note on complexity of problems.

OR

b. Prove that in a graph G with n vertices, if there is a path from vertex v 1 to vertex v 2 , then there is a path of no more than $n-1$ edges from vertex $v 1$ to vertex $v 2$.

Q-6 Answer the following questions:

a. Let G be a linear graph of n vertices. If the sum of the degrees for each pair of vertices in G is $\mathrm{n}-1$ or larger, than prove that there exists a Hamiltonian path in G .
b. Mention fuzzy relations (i) Union, (ii) Intersection and (iii) Complement by giving an example of each.

OR
b. Define fuzzy proposition and solve the following

Let \tilde{P} jessica is efficient $T(\tilde{P})=0.7$
And \dot{Q} :john is efficient $T(\bar{Q})=0.55$
(i) $\mathrm{T}(\tilde{P} V Q)$ Either Jessica or John is efficient
(ii) $\hat{P}=\tilde{Q}$ If Jessica is efficient then sois join.

