No. of Printed Pages: 03 SARDAR PATEL UNIVERSITY

EXTERNAL EXAMINATION, APRIL 2014

M.Sc INDUSTRIAL CHEMISTRY-SEMESTER 2

UNIT OPERATIONS II & STOICHIOMETRY- PS02CICH01

18thApril,2015

Max.Marks:70

s <

Time:10.30 a.m-1.30 p.m

Answer all the questions. Figures to the right side indicate marks

Q1 .Write the number of the correct statement. All questions carry 1 mark each. (8 *1=8marks)

a. In a shell & tube heat exchanger,

(15)

- i. square pitch gives more heat transfer area than triangular pitch.
- ii. triangular pitch gives more heat transfer area than square pitch.
- iii. both square & triangular pitch give same heat transfer area
- iv. cleaning facility is same in both square & triangular pitch

b. Identify the correct relation.

- i. 1 W = 1 J/s ii. 1W = 1 kcal/s iii. 1 W = 1 cal/s iv. 1 W = 1 cal/hr
- c. The -----component is always present in less than its stoichiometric proportion with respect to other reacting components.

i.excess reactant ii.stoichiometric reactant iii. limiting reactant iv.none of these

- d. Heat transfer occurs by natural convection because change in temperature causes difference in----
- i. viscosity ii.thermal conductivity iii.heat capacity iv.density
- e. Fouling factor of a heat exchanger depends on

i. length of fins ii.thickness of fins iii.scales formed iv.density of cold fluid

f. The overall resistance for heat transfer through a series of flat resistance is the ----- of the resistances

i. average ii. Product iii.geometric mean iv.sum

g. The temperature average used in heta exchanger calculation is -----temperature difference

i.arithmetic mean ii.geometric mean iii. Logarithmic mean iv. None of these

h. Multipass heat exchangers are used ------

- i. Because of simplicity of fabrication
- ii. For low heat load
- iii. To obtain high heat transfer co-efficient & shorter tube
- iv. To reduce pressure drop

~.<u>.</u>____

Q2. Answer any seven (each question carry two marks)

(7*2=14 marks)

- a. Define white body and opaque body
- **b.** In which side (tube/shell) will you take viscous fluid in a shell & tube exchanger? Justify your answer.
- c. Distinguish between triangular and square pitch
- d. Why are extended surfaces used in heat transfer?
- e. Enlist the conditions when maximum heat transfer rate occurs in a heat exchanger
- f. Define effectiveness of a heat exchanger
- g. Define adiabatic flame temperature
- h. Distinguish between sensible heat and latent heat
- i. Define % conversion and yield of reaction

Q3.

a.Discuss the significance of the following dimensionless numbers (06)

- Nusselts Number
- Grashoffs Number
- Prandtls Number

b.With the help of neat diagrams, distinguish between parallel and counter flow heat exchangers. (06) OR

b. Citing examples, distinguish between free and forced convection (06)

Q4.

a. A fluid (Cp=4 kJ/kg K) flowing at 23000 kg/hr passes through a counter current heat exchanger at 130°C.Water (Cp=4.18 kJ/kg K) flowing at 52000 kg/hr and entering at 25°C is used to cool the fluid .If the heat transfer area is 11 m² and the overall heat transfer co-efficient is 3500 kJ/hr m²K, find the exit temperatures of fluid and water using NTU method. (06)

b. A multi pass Shell & Tube heat exchanger is required to heat 25000 kg/hr of cold water entering at 25 °C using 20,000 kg/hr of hot water entering at 100°C and leaving the exchanger at 80 °C. The cold water flow through 10 tubes each of OD 0.01m and ID 0.008 m. The hot water flows through the annulus between tubes and a shell of dia 0.25 m. The thermal conductivity of the tube material is 60 kJ/hr m K. The properties of water are given below (06)

 $\rho = 1000 \text{ kg/m}^3$ Cp = 4.18kJ/kg K $\mu = 3.6 \text{ kg/hr m}$ k=2.9 kJ/hr mK

calculate the length of the heat exchanger if it is

A parallel exchanger

OR

A counter exchanger

a. Methane undergoes the following oxidation reactions.

 $CH_4 + O_2 = HCHO + H_2O$ $CH_4 + 2O_2 = CO_2 + 2H_2O$

100 kmol of methane is charged to the reactor and the product stream contains 10 kmol Carbondioxide and 40 kmol formaldehyde. Calculate the % conversion of methane and % yield of formaldehyde. (06)

b. 2000 kg of wet solids containing 70 % solids by weight are fed to a tray drier where it is dried by hot air. The product obtained is found to contain 1 % moisture by weight. Calculate (06)

- kg of water removed from wet solids
- kg of product obtained

OR

b.An evaporator is fed with 15000 kg/h of a solution containing 10 % NaCl,15 % NaOH and rest water. During the process, water is evaporated and NaCl is precipitated as crystals. The thick liquor leaving the evaporator contains 45 % NaOH,2 % NaCl and the rest water. Calculate (06)

- kg /h of water evaporated
- kg/h of salt precipitated
- kg/h of thick liquor

Q6.

a. Calculate the heat to be transferred to a liquid stream of ethanol at its normal boiling point to generate 100 kg/h of saturated ethanol vapour. λ =842.3 kJ/kg (06)

b. A stream flowing at the rate of 15 kmol/h containing 25 % N_2 and 75 % H_2 is to be heated from 298 K to 473 K.Calculate the heat that must be transferred using the Cp data given below. (06)

Gas	a	b	с	d
N ₂	29.59	-5.41*10 ⁻³	13.183*10 ⁻⁶	-4.97*10 ⁻⁹
H ₂	28.61	1.019*10 ⁻³	-0.147*10 ⁻⁶	0.769*10 ⁻⁹

OR

b. Chlorine is manufactured using the reaction $4HCl + O_2 \rightarrow 2Cl_2 + 2H_2O$ where 35 % excess air is used. If the feed contains 4 kmol HCl and if the oxidation is 80 % complete, calculate the heat that must be removed so that the products emerge at 600 K. The dry air and HCl enter at 560 K. $\Delta H_R^0 = -28600 \text{ kJ/mol}$ (06)

Cp (KJ/mol K)	HC1	O ₂	N ₂	Cl ₂	H ₂ O
(560-298 K)	24.85	25.98	29.08		
(600-298 K)	30.31	26.02	29.59	28.08	31.05

-1011

Q5.

- X -