SEAT	No
------	----

No. of Printed Pages: 02

[53]

SARDAR PATEL UNIVERSITY

M. Sc. Semester - II Examination Tuesday, April 2017 **INDUSTRIAL CHEMISTRY Subject: Unit processes**

Date: 11/04/2017	Course No.	: PS02CICH07
------------------	------------	--------------

2: 10:	00 a.m. to 01:00 p.m.	iviarks: 70			
	Answer the following MCQ s (Attempt all)		[80]		
l,		n various methods of chlorination			
	a. Chain initiation				
	c. Chain propagation				
II.	Bromination is carried out by	<u>_</u> :			
	a. Addition reaction	b. Replacement reaction			
	c. Substitution reaction	d. All of above			
III.	DVS is ratio of				
	a. H₂SO₄:H₂O	b. HNO₃:H₂O			
	c. HCl:H₂O	d. HCl:HNO₃			
IV.	Which catalyst is used for production of bea	nzoic acid?			
	a. Boron trifluoride	b. Vanadium oxide			
	c. Calcium chloride	d. Vanadium sulphate			
V.	The mechanism of acid-catalyzed alcoholysis is similar to the				
	a. Acid-catalyzed oxidation	b. Base-catalyzed esterification			
	c. Acid-catalyzed esterification	d. Base-catalyzed oxidation			
VI.	The reaction between phenyl benzoate and sodium ethoxide give				
	a. Ehyl benzoate	b. Sodium benzoate			
	c. Benzene	d. None of this			
VII.	The vaporization salt scheme is suitable for the synthesis of alcohols containing				
	number of carbon atom.				
	a. 5	b.7			
.1	c. 9	d. 11			
VIII.	What is boiling point of methanol?				
	= :	b. 64.7°C			
	c. 67.5 ^o C	d. 74.2°C			
	Answer the following short question (Any	seven)	[14]		
ı	Enlist the types of alkylation.				
B	Draw labelled diagram of externally cooled batch chlorinator.				
111					
	· · · · · · · · · · · · · · · · · · ·	It flow sheet.			
	-				
	I. II. IV. VI. VIII.	Answer the following MCQ s (Attempt all) I. The difference in activation energy between depends on the step. a. Chain initiation c. Chain propagation II. Bromination is carried out by a. Addition reaction c. Substitution reaction iii. DVS is ratio of a. H ₂ SO ₄ :H ₂ O c. HCl:H ₂ O IV. Which catalyst is used for production of benase a. Boron trifluoride c. Calcium chloride V. The mechanism of acid-catalyzed alcoholys a. Acid-catalyzed oxidation c. Acid-catalyzed esterification VI. The reaction between phenyl benzoate and a. Ehyl benzoate c. Benzene VII. The vaporization salt scheme is suitable for number of carbon atom. a. 5 c. 9 VIII. What is boiling point of methanol? a. 60.5°C c. 67.5°C Answer the following short question (Any I Enlist the types of alkylation. II Draw labelled diagram of externally cooled iii Define nitration and unit operation. IV Enlist nitrating agents. V Define oxidation. VI What is direct hydration? VIII Define hydrolysis with suitable example. VIII Draw the labelled diagram of extraction sa	Answer the following MCQ s (Attempt all) I. The difference in activation energy between various methods of chlorination depends on the step. a. Chain initiation		

Q.3	(a) (b)	Write explanatory note on types of alkylated compounds With the help of labelled diagram explain construction and working of reactors	[06] [06]
	1	used in alkylation. Or	
	(b)	With the help of suitable examples explain about important methods used for preparation of bromine compounds.	[06]
Q.4	(a)	With the help of flow diagram explain continuous nitration of benzene.	[06] [06]
	(b)	With the help of flow diagram explain manufacture of benzene sulfonic acid Or	
	(b)	Write note on types of oxidative reactions.	[06]
Q.5	(a) (b)	Write note on acid hydrolysis and alkali hydrolysis. With the help of flow diagram explain manufacture of ethyl acetate	[06] [06]
	(b)	Or With the help of flow diagram explain manufacture of ethanol.	[06]
Q.6	(a) (b)	With the help of flow diagram explain manufacture of iso-butyraldehyde. With the help of flow diagram explain manufacture of methyl alcohol. Or	[06] [06]
	(b)	Write note on fischer tropsch synthesis.	[06]

[59]

SARDAR PATEL UNIVERSITY **EXTERNAL EXAMINATION, APRIL 2017**

M.Sc. INDUSTRIAL CHEMISTRY-SEMESTER 2

HEAT TRANSFER OPERATIONS & STOICHIOMETRY- PS02CICH09

13th April, 2017

Max.Marks:70

Time: 10.00 a.m-1.00 p.m

Answer all the questions.

Figures to the right side indicate marks

Q1 .Write the number of the correct statement. All questions carry 1 mark each. (8 *1=8marks)

a. Identify the correct relation.

i.W = 1 J/s

ii. 1W = 1 kcal/s

iii.1 W = 1 cal/s

iv.1 W = 1 cal/hr

b. The -----component is always present in less than its stoichiometric proportion .

i.excess reactant

ii.stoichiometric reactant

iii. limiting reactant iv.none of these

c. Natural Convection is characterized by

i.Peclet number

ii.Grashoffs number

iii.Reynolds number

iv.Stanton Number

d. The centre-centre distance between 2 tubes is called

tube clearance

g. Grashoffs number is defined as

i. Forward feed ii.Backward feed

ii.tube pitch

iii.tube sheet

iv.tie rods

e. ---- increases turbulence in a heat exchanger

i. fins

ii. baffles

iii. Tube sheet iv. None of these

f. The effect of scale formation is to ----- the heat transfer co-efficient

increase

ii. decrease

iii.rotate

iv. none of these

iii.Mixed feed

i.L²ρ²g β Δ T/ μ ²

ii. $L^3 \rho g \beta \Delta T/\mu^2$

iii. $L^3 \rho^2 g \beta \Delta T/\mu$

Q2. Answer any seven (each question carry two marks)

h. Which is most suitable for the evaporation of cold viscous feed?

(7*2=14 marks)

iv.Parallel feed

a. Define fouling factor in heat exchanger

b. Distinguish between individual and overall heat transfer co-efficient

c. Distinguish between pitch and clearance

d. Why are tie rods and spacers used in heat exchangers?

e. Enlist the conditions when maximum heat transfer rate occurs in a heat exchanger

f. Define the term NTU used in heat exchanger calculations

g. Define LMTD of parallel & counter flow heat exchangers

h. Distinguish between limiting reactant and excess reactant

Define selectivity and yield of reaction

Q3.

a.A fluid of density 13500 kg/m³ and at 80°C is pumped through a pipe of 0.02 m ID kept at 30 °C at 15000 m/hr. At the average temperature of 55 °C, the properties of fluid are as follows. Calculate the heat transfer co-efficient. (06)

Cp (kJ/kg K):0.14 k (kJ/hr m K):29 μ (kg/hr m K):3 **b.** A pipe 0.15 m dia & 1 m length and at temperature of 573 K is covered with 2 layers of insulation. The first layer is o 0.05m thick with a k value of 0.062 W/m K and the second layer is 0.06 m thick with a k value of 0.8 W/m K. The outer surface of second layer covering is at a temperature of 330 K. Calculate the heat loss and the interface temperature. (06)

OR

b.A horizontal cylinder 0.025 m dia and 0.6 m long is suspended in water at 20 °C.Calculate the heat transfer co-efficient if the cylinder surface is at 55 °C. (06)

ρ (kg/m³)	Npr	k (kJ/hr mK)	β(K ⁻¹)	μ(kg/hr m)
992	4.64	2.376	3.96 * 10 ⁻⁴	2.47

Q4.

a. A fluid (Cp=3.3 kJ/kg K) flowing at 20000 kg/hr enters a parallel flow heat exchanger of 40 % efficiency at 120 °C. Water (Cp= 4.186 kJ/kg K) flowing at 50000 kg/hr which is used as the coolant enters at 20 °C. If a heat transfer area of 10 m² is available, what will be the heat transfer co-efficient?

b. Find the length of a double pipe exchanger required to heat 4000 kg/hr of oil from $10\,^{\circ}$ C to $20\,^{\circ}$ C using hot water at $70\,^{\circ}$ C flowing at 690 kg/hr. The hot water flows through the inner pipe of ID 0.018 m and OD 0.021 m. The ID of the outer pipe is 0.03 m. k for pipe= 0.008 kJ/hr m K. (06)

	Cp(kJ/kgK)	k (kJ/hr mK)	$\rho(kg/m^3)$	μ(kg/hr m)
Water	4.18	2.376	1000	1.458
Oil on for	1.885	0.504	850	2.163

Do the calculation for

A parallel flow exchanger

OR

A counter flow exchanger

Q5.

100 kg of a solution containing 55 % benzene, 28 % toluene, and 17 % xylene by weight is in contact with its vapour at 373 K.Calculate the total pressure and molar composition in liquid phase.

	· · · · · · · · · · · · · · · · · · ·		/0.
L	Benzene(MW:78)	Toluene (MW:92)	(00
Vap. Pr (kpa)			Xylene(MW:106)
(kpa)	178.6	74.6	28
		<u> </u>	20

b. A combustion reactor is fed with 50 kmol/h of butane and 2000 kmol/h of air. $C_4H_{10}+6.5~O_2 \rightarrow ~4CO_2+5H_2O$.

Calculate the % excess air and the composition of gases leaving the combustion reactor assuming complete combustion.

b. An evaporator is fed with 15000 kg/h of a solution with 10 % NaCl, 15 % NaOH and rest water. The water is evaporated and NaCl is precipitated as crystals. The thick liquor leaving the evaporator contains and thick liquor obtained.

(06)

Q6.

a.100 moles of methane is oxidized with 50 % excess air to produce formaldehyde as per the reaction

 $CH_4 + O_2 \rightarrow HCHO + H_2O$

All the reactants enter at 311 K with 60 % conversion of methane. Calculate the heat that must be removed for the product stream to emerge at 478 K.

Component	product stream to emerge at 4	178 K.	the heat that must be
CH ₄	Cp (311-298 K) J/mol K	Cp (478-298 K) J/mol K	(06)
0114	36.044	40.193	
O_2		10.193	Std. heat of reaction = -
N ₂			283000 J/mol
НСНО		<u> </u>	1
H_2O		41.2902	
		34.2396	

 ${\bf b}$.Calculate the standard heat of reaction of the following reaction

(06)

 $4 \text{ NH}_3 + 5\text{O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$

Component ΔHf (kJ/mol)	NH ₃ NO -45.94 90.25	H ₂ O -241.82
	70.25	-241.82

OR

b. 100 kg/h of methanol liquid at 303 K is to be obtained by removing heat from saturated methanol (06)

Boiling point of methanol = 337.8 K, Cp of methanol =2.7235 kJ/kg K

Latent heat of condensation = 1101.7 kJ/kg

SARDAR PATEL UNIVERSITY

SEAT No.____

M.Sc SEMESTER-II EXAMINATION

M.Sc INDUSTRIAL CHEMISTRY

PS02CICH10 PETROCHEMICAL TECHNOLOGY

TUNE: 10:00A.W.	-U1:00P.M	17-04-2017	7, MONDAY	MARKS:	70
Q.1 ANSWER THE	FOLLOWING MCQs	.,		(08)	
1 is a compounds	a naturally occurring n	nixture of light hydroca	rbons accompanied by some	e non-hydrocari	bon
A. Synthesis Gas	B. Natural Gas	C. Water Gas	D. All of these		
2 is	condensable heavier l	hydrocarbons that are	recovered from natural gas.	•	
A. CNG	B. LNG	C. PNG	D. NGL		
3. lnp	rocess, part of the cok	e produced is used to p	provide the process heat.		
A. Delayed Coking	B. Fluid Coking	C. Viscosity Breaking	D. Steam Cracking		i + .
4. The two major ch	emicals viz. ammonia	and methanol are prod	uced from		
A. Synthesis gas	B. Natural gas	C. Water gas	D. None of these		· (.
5 is prod	duced as intermediate	during urea productio	n.		
A. Ammonium aceta	te B. Ammonium Carb	amate C. Ammonium C	Chloride D. Ammonium nitra	te	
		produces eth	•		
A. Fatty amines	B. Fatty acids	C. Fatty alcohols	D. Fatty nitriles		
7 is pro	oduced from ethylene	oxidation using wacke	r catalyst.		
A. Acetaldehyde	B. Acetic acid	C. Formaldehyde	D. Formic acid		
3. Alkylation of benze	ene produces				
A. LAB	B. Ethyl Benzene	C. Cumene	D. All of these		1
Q.2 Answer the follow	ving short questions (/	Any 7)		(14)	
. Enlist various prima	ary raw materials for p	etrochemicals.		(- 4)	
<u>.</u>	rent streams of NGL?		·		
. Explain briefly vario	ous types of crude oil.	en e			
			-		

4. Discuss the production of hydrazine from ammonia.	
5. What is synthesis gas, Enlist the methods used to produce synthesis gas.	
6. Enlist various chemical conversion processes for crude oil processing and explain vis-breaking	ζ,
7. What is wacker catalyst?	
8. Enlist the important chemicals produced from toluene.	
9. Why Ethylene is known as 'King of Petrochemicals'?	
Q.3 (a) Define the terms: Petrochemicals, and discuss about the composition and properties of	crude oils.
	(06)
Q.3 (b) Discuss in brief various natural gas treatment processes	(06)
OR	
Q.3 (b) Explain the terms: i. Associated and Non-Associated Natural gas	
ii. CNG and LPG	(06)
Q.4 (a) Enlist various physical separation techniques for crude oil processing and write a note of extraction.	n Solvent (06)
Q.4 (b) Write a detailed note on catalytic cracking	(06)
OR	· 24
Q.4 (b) Write a detailed note on steam reforming	(06)
Q.5 (a) Discuss in brief the chemicals based on direct reaction of Methane with reagents.	(06)
Q.5 (b) Write a note on synthesis gas and ammonia production starting from methane.	(06)
OR	
Q.5 (b) Discuss the technology of methanol production from synthesis gas along with its major	r uses. (06)
Q.6 (a) Enlist various important chemicals produced from ethylene and discuss the production and vinyl acetate monomers from ethylene.	of vinyl chloride (06)
Q.6 (b) Give an explanatory note on the production technology of phenol and acetone from b cumene.	enzene via (06)
OR	
Q.6 (b) Write a note on chemicals produced from propylene.	(06)
Good Luck	-2-

[34		M. Sc. (Industrial Chemi	AR PATEL UNIVERSITY istry), Second (2 nd) Semester April - 2017	entri etti oli valle ili oli ili oli oli oli oli oli oli oli	
÷		Wedi	POLLUTION CONTROL TECHI nesday, 19 th April, 2017	NOLOGY	
Tim	e: 10:0	0 a.m. to 01:00 p.m.	roomly, to repetit, more	Total Marks	: 70
Note	ii) Fig	empt all the questions. gures to right indicate full marks raw neat diagrams wherever it re	o		
Q-1	1. Fo	nswer the following Multiple pssil fuel combustion accounts a) sulphur	Choice Questions. for almost all anthropogenic c) nitrogen	emissions.	(08)
\$ \$1-1s.	-	b) fog	d) PSA	Santa promise de la compositione d La compositione de la compositione	
vision (Programme States	e de la companya de l	18 - 18 TA
75 t	2	are the primary natural s	sources of VOC emissions.		v e
17		a) Forests	c) Automobile		
		b) Sea	d) Land erosion	en de la companya de	VAN SAIR
	3. Pł	notochemical smog forms prima			
			c) nitrogen		
45		b) phosphorous	مراه ما الم		
Av	4. Th	ne sampling height of about		kalenda ja kalendari ja	
		a) 3 to 10 b) 1 to 2	c) 8 to 9 d) 15 to 20		
1	5.	is the primary metrologica	al parameter.	o samenjekeji je rijeve ji yez dalik s	
Ď)	e inggebo	a) Mixing height b) Humidity	c) Precipitation	e, appendente eta esta esta esta esta esta esta est	क्षा ४ के
. (6.	is used as an absorbing	media in SO ₂ determination.		
		a) NEDA	化氯化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	en e	
	*	b) Pararosaniline HCI	d) KI solution		
Ċ.	7. Th	ne NAAQS monitoring should be		um days in a y	year.
Ş		a) 365		man mangapit d	
Ú,		b) 104	d) 360	and the second	
	8. Da	ata recorded in an arbitrary mar lled	oner after their collection from t	he field of enquiry are	
		•	and the second		
		a) study data	c) secondary data		
		b) raw data	d) presentation data		

Q-2		Answer the following short questions. Each question carries equal mark. (Any Seven)	(14)
,	1. 2.	List out the air pollutants from farm animals.	
	3.	What are the different types of damage to leaves due to pollution? Write the classification of sampling methods for air pollution.	
	4.	Define secondary meteorological parameter 'precipitation'	
	5.	Write the aldehydes photochemical reaction.	
	6.	When does fanning plume occur?	
	7.	How to mitigate carbon footprint?	
	8.	Define: Relative frequency.	
	9.	Briefly explain with illustration the distinction between qualitative and quantitative data.	
Q-3	(a)	What are the causes of acid rain?	(06)
Q-3	(b)	What are the effects of air pollution on human health?	(06)
		OR	
Q-3	'(b)	Write note on Volatile Organic Compounds (VOCs) as a pollutant.	(06)
Q-4	(a)	Discuss in brief the sampling and analytical technique for NO₂ pollutant.	(06)
Q-4	(b)	Write a note on plume behavior.	(06)
		OR	
Q-4	(b)	i) Briefly discuss the criteria for selecting location for air sampling.	(03)
		ii) Write a note on wind direction and speed as a factor of air pollution.	(03)
Q-5	(a)	Briefly explain the causes and effects of 'Chernobyl Disaster'.	(06)
Q-5	(b)	i) How to mitigate carbon footprint?	(03)
		ii) What is carbon sink? Define natural and artificial sinks.	(03)
		OR	` ,
Q-5	(b)	Explain the theory of photochemical smog formation.	(06)
Q-6	(a)	Distinguish between census and sample survey.	(06)
Q-6	(b)	i) Monthly average concentration of Ozone at BSZ Marg (ITO), New Delhi during 2015 is	(03)
		given below. Calculate mean and standard deviation concentration of ozone.	
		Month Jan Feb March Apri May June July Aug Sep Oct. Nov Dec	
		Ozone (µg/m³) 15 25 36 30 31 33 41 54 36 42 26 24	
		ii) Explain with suitable example frequency distribution.	(03)
0 e	/h\	OR	
Q-6	(b)	i) Explain with suitable examples descriptive and inferential statistics.	(03)
		ii) What is stack sampling?	(03)
		Page 2 of	: 2
		All the Best	-
