SARDAR PATEL UNIVERSITY VALLABH VIDYANAGAR-388120.

M.Sc. (I Sem) Industrial Biotechnology

PS01C IBT03 - Chemical Engineering and Thermodynamics of Biological System 6 Dec 2012, Thursday, 10.30 a.m. to 1.30 p.m.

Total Marks: 70

QI Choose the most appropriate answer

(1x8)

- (i) A positive value of ∆G means
 - A. Products of the reaction contain more free energy
 - B. Reactants of the reaction contain more free energy
 - Products and reactants both have equal energy
 - D. None
- (ii) NAD+ accepts
 - A. Accepts 2 electrons and 2 hydrogen ions
 - B. Accepts 2 electrons and 1 hydrogen ion
 - C. Accepts 1 electron and 1 hydrogen ion
 - D. Transfers electrons in reductive biosynthesis
- (iii) Which one describe the relationship between ΔG' and rate of a reaction
 - A. ΔG¹⁰ is linearly proportional to the rate
 - B. ΔG¹⁰ is inversely proportional to the rate
 - C. If ΔG' is positive, the reaction is spontaneous
 - D. ΔG^{*0} provides no information about the rate.
- (iv) The proton motive force generated by the electron transfer chain
 - A. Includes a pH -gradient component
 - B. Includes an electrical -potential gradient component
 - C. Is used to synthesize ATP and for active transport processes
 - D. Has all the above characteristics.
- (v) Starch suspension is example of
 - A. Bingham plastic fluid
 - B. Pseudo plastic fluid
 - C. Dilatant fluid
 - D. Rheopectic
- (vi) Physical significance of Reynolds is
 - A. Viscous force / Interfacial force
 - B. Interfacial force / Viscous force
 - C. Rate of change of momentum
 - D. Mass / Kinematic viscosity.

(vii) In po	wer law, value of for Bingham plastic fluid is:	
Α.	n>1	
В.	n < 1	
C.	n = 1	
D.	n = 0	
(viii) Med	hanical energy loss associated with boundary layer formati	ion is known as:
A	Drag resistance	
	Form friction	
	Skin friction	
	Viscous loss	
OH V	rite short notes on any Seven	7 X 2 = 14
QII V	The short notes on any seven	
A	. Laws of thermodynamics	
В	. Biological clocks	
C		
D		
. E		
F	Homolytic and heterolytic cleavage	
G		isport chain ?
H	. Why cell can not use heat directly as an energy source	2.7
I.	Why conversion of ATP to ADP is an irreversible rea	ction r
QIII A.	How do ΔG , $\Delta G'$, $\Delta G'^{\circ}$ and ΔGp differ ? How cell can driven an expectation in forward direction ?	e a thermodynamically [06]
QIII B.	Calculate the physiological ΔG for the reaction	[06]
Pl	osphocreatine + ADP creatine + ATP	
At 2 creat value	5 °C, as it occurs in the cytosol of neurons, with phosphoo ine at 1.0 mM, ADP at 0.73 mM and ATP at 2.6 mM, using	creatine at 4.7 mM, ng following ΔG ¹⁰
(1) (2)	Phosphocreatine $+ H_2O \longrightarrow$ creatine $+ Pi$ ATP $+ H_2O \longrightarrow$ ADP $+ Pi$	$\Delta G^{*0} = -43.0 \text{ kJ/mol}$ $\Delta G^{*0} = -30.5 \text{ kJ/mol}$
	OR	
, when	A total of 30.5 kJ/mol of free energy is needed to synthesiz the reactants and products are at 1M concentration (Standargy required to synthesize ATP in the human hepatocyte	lard state). Calculate the

- QIVA. Explain how electron transfer reactions in mitochondria leads to synthesis of ATP? [6]
- QIVB. With suitable example briefly explain various types of chemical reaction occurring in biological system. [06]

OR

QIVB The standard reduction potential E¹⁰, of any redox pair is defined for the half-cell reaction

Oxidizing agent + n electrons reducing agent

The E^{*0} values for the NAD⁺/NADH and pyruvate /lactate conjugate redox pairs are -0.32 V and -0.19 V respectively.

Pyruvate + NADH +H $^+$ \longrightarrow Lactate + NAD $^+$ [06]

- i) Which conjugate pair has the greater tendency to lose electrons?
- ii) Which is stronger oxidizing agent?
- iii) What is standard free energy change ΔG^{*} and equilibrium constant K^{*} eq for the conversion of Pyruvate to lactate.
- QVA.Classify fluid mechanics. Mention an industrial application of continuous gravity decanter and derive an expression of height of heavy liquid discharge leg required by using concept of hydrostatic equilibrium. [06]
- QVB. Velocity profile of a fluid over the plate is parabolic with the vertex 20 cm from the plate surface where the fluid velocity is 120 m/s. Calculate velocity gradient and shear stress at a distance 0, 10 and 20 cm from the plate surface. Viscosity of fluid is 8.5 poise. [06]
- QVB. Show that average velocity is a one half of maximum velocity for laminar flow of incompressible Newtonian fluid through circular pipe. [06]
- QVIA. Define friction factor and discuss the friction factor chart with necessary diagram. Show that $f = \frac{16}{N_{Re}}$ for laminar flow of incompressible Newtonian fluid through circular pipe. [06]
- QVIB. Discuss importance of momentum correction factor and show that momentum correction factor is 4/3 for laminar flow of incompressible Newtonian fluid through circular pipe. [06]

OR

QVIB. Discuss shear stress distribution for fully developed steady flow of incompressible fluid though horizontal circular tube. [06]