No. of Printed Pages: 02

SARDAR PATEL UNIVERSITY M. Sc. Integrated Biotechnology Examination, Second Semester Tuesday, 21st April 2015 10:30 a.m. to 1:30 p.m. PS02CIGB01: Physics- II

Maximum Marks: 70

Note: 1) All the Questions are compulsory. 2) Figures on the right indicate marks.

- Q.1 Choose the correct option.
 - 1 The unit of force is

(28)

- (a) Newton (b) Webber (c) Tesla (d) Coulomb
- is an example of a ferromagnetic substance. 2 (a) nickel (b) alcohol (c) hydrogen (d) chromium
- 3 The ratio of lateral strain to linear strain is known as
 - (a) Modulus of elasticity (b) Young's modulus
 - (c) Poisson's ratio (d) Bulk modulus
- 4 The threshold intensity for sound wave of frequency is _
- (a) 10^{-8} watt/m² (b) 10^{-10} watt/m² (c) 10^{-12} watt/m² (d) None of these
- Heat flowing from one side to other side does not depend directly on 5 (a) face area (b) thickness (c) temperature difference (d) time
- 6 The process of transmission of heat from one body to another body without heating the intervening medium is called

(a) conduction (b) convection (c) radiation (d) None of these

- The number of atoms per unit cell in FCC crystal structure is 7 (a) 2 (b) 4 (c) 1 (d) 6
- 8 In N-type semiconductor materials, the majority charge carriers are (a) electrons (b) holes (c) protons (d) neutrons

Q.2. Answer the following questions. (Attempt any seven)

- State the properties of electric line of force. 1
- 2 Enlist the properties of diamagnetic substance.
- 3 Plot a graph of stress versus strain.
- 4 Explain Newton's formula for calculation of velocity of sound in air.
- 5 State the properties of sound absorbing materials.
- 6 Define specific heat capacity and give its formula.
- 7 State and explain first law of thermodynamics.
- 8 Define lattice and basis of a crystal.
- 9 Draw the plane for given Miller Indices (100) and (111).

 $(\mathbf{P} \mathbf{T} \mathbf{O})$

1

[14]

[8]

SL

Q.3(a)	Derive the equation of electrostatic potential at a given point. Give its various Units.	[06]
(b)	Define Paramagnetic and ferromagnetic substance. Also state their properties. OR	[06]
(b)	 (i)Two equal and similar charges 3 cm apart in air repel each other with a force equivalent to that of 1.5kg wt. Find the charges in Coulomb. (ii) Define Hall effect. State its applications 	[03] [03]
Q.4 (a) (b)	Explain Young Modulus and Bulk modulus. Discuss the effect of temperature and pressure on the speed of sound. At what temperature will the speed of sound in air become double of its value at 0°C? OR	[06] [06]
(b)	Derive general expression for the velocity of sound in Gaseous medium.	[06]
Q.5(a) (b)	Derive an expression for rectilinear flow of heat along a bar. Define co-efficient of thermal conductivity. Explain the Searle's method for determination of thermal conductivity of good conductors. OR	[06] [06]
(b)	(i)A very small hole in an electric furnace is used for treating metals acts nearly as a black body. If the hole has an area 200mm ² and it is desired to maintain the metal at 1100°C, how much energy travels per second through the hole? σ =5.67 X 10 ⁻⁸ Wm ⁻² K.	[03]
	(11)State and explain Stefan's Law.	[03]
Q.6 (a) (b)	Write a note on Light Emitting Diode and Photovoltaic cell. (i)Calculate the atomic packing factor for BCC crystal structure. (ii)Write a note on Intrinsic and Extrinsic semiconductors. OR	[06] [03] [03]
(b)	What is crystal symmetry? Explain point group symmetry and space group symmetry with appropriate examples.	[06]

.

*****All the best*****