SARDAR PATEL UNIVERSITY

M. Sc (Int.) Biotechnology: Semester IV Examination Tuesday, 4th December, 2012

Time: 2.30 pm to 5.30 pm Sub: PS04CIGB01: Bioenergetics

Total Marks: 70

Q-1 Give the answer by choosing appropriate option.

- The standard free energy of hydrolysis of phosphocreatine is
 (a) 43 kJ/mol
 (b) -49 kJ/mol
 (c) -30 kJ/mol
 (d) None of these
- (2) The system gains free energy and free energy change is/positive in...
 (a)Endergonic (b) Exergonic (c) Exothermic (d) Endothermic reactions
- (3) How many ATPs are produced when 2 glucose molecules enter in glycolysis.
 (a) 36 (b) 42 (c) 8 (d) None of these
- (4) One of the following enzymes in TCA catalysis an irreversible reaction (a)Succinate thiokinase (b)Hexokinase (c)Phosphofructokinase (d)None of the above
- (5) The number of ATP is produced when a molecule of acetyl CoA is oxidized through citric acid cycle.

 (a)12
 (b) 24
 (c) 20
 (d) 38
- (6) Following is the regulatory enzyme of glycolysis
 (a)Citrate synthase (b) hexokinase (c) Enolase (d) none of above
- (7) A defect in HGPRT enzyme causes...
 (a) Reye's syndrome (b) Orotic aciduria (c) Lesch-Nyhan syndrome (d)None of these
- (8) ----- is the intermediate between Inosine monophosphate and guanosine monophosphate.
 (a) Adenosine monophosphate (b) Xanthine (c)Xanthosine monophosphate (d) None of these

Q-2 Answer the following questions in short. (Any seven)

- (1) What is Cori cycle?
- (2) Differentiate between glucokinase and hexokinase

18 X

17)

	(4)	Discuss the energetics of TCA cycle.	
	(5)	What is the role of HGPRT in purine metabolism?	
	(6)	Explain-The citric acid cycle is amphibolic in nature.	
	(7)	Define entropy and enthalpy.	
	(8)	Explain two fundamental laws of thermodynamics.	
	(9)	Write the role of regulatory enzyme CPS-II in pyrimidine metabolism.	10
Q-3	(a)	Describe hydrolysis of ATP and free energy change.	106
	(b)	Explain the measurement of the standard reduction potential of a redox pair. OR	106
	(b)	Explain standard free energy change by giving appropriate example.	106
Q-4	(a)	What is glycolysis? Discuss irreversible steps of glycolysis.	106
	(b)	Give an overview of hexose monophosphate shunt and its significance. OR	106
6.	(b)	Give a brief account on glycogenesis.	[06
Q-5	(a)	Briefly discuss the steps of Kreb's cycle.	106
Q-3	(b)	Explain glyoxylate cycle in brief.	106
	8.4	OR	
	(b)	Give a detail note on regulation of TCA cycle.	106
Q-6	(a)	Write an account of the biosynthesis of inosine monophosphate.	106
	(b)	Explain the metabolic pathway for the synthesis of Uridine monophosphate. OR	106
	(b)	Write a note on degradation of purines.	106

(3) Explain substrate level phosphorylation.
