OC

No. of Printed Pages: 03

(16) SARDAR PATEL UNIVERSITY

M.Sc. Integrated Biotechnology, First semester
TuEsday, 11th December, 2012
Time: 10:30 a.m. to 1:30 p.m.

Time: 10:30 a.m. to 1:30 p.m. Course Code: PS01CIGB06 Course Title: Biomathematics

Total marks: 70

	Note:	Figures to right indicate marks. Choose the most appropriate alternative for the following:					1990	
	Q.1						[8]	
		1.	The function f(x)	= 5x +11 represent	ts			
			(a) Parabola oper	ning upward (b) Para	abola opening downward	(c) Straight line	(d) Circle	
		2.	Derivative of se					
			(a) sec(2x)	(b) secxtanx + 1	(c) secxtanx	(d) None of these		
		3.	Partial derivativ	Partial derivative of $x^3 + y^3$ with respect to y is				
			(a) 3x ²	(b) 3y ²	(c) $3x^2 + 3y^2$	(d) None of these		
		4.	Integration of e	x with respect to x i	s			
			(a) e ^x	(b) 1	(c) 0	(d) None of these		
		5.	to a 222 matrix if it exists will be					
***		10000	(a) 2X2	(b) 3X3	(c) 2X3	(d) 3X2.		
	9.	6.	If function $f(x)$ satisfy $f(x) < f(x_0)$ for all x_0 in some neighborhood of x , then x is of $f(x)$.					
			(a) Local Maxir	na (b) Local Minima	(c) Saddle point	(d) None of these.		
		7.	For derivative	of composite functio	n, rule is	s used		
			(a) Chain	(b) Addition	(c) Quotient	(d) None of these.		
		8.	For two matrices A and B, AB is defined only if, Number of columns in $A = Number$ of					
		0.	in B					
			(a) Columns	(b) Rows	(c) elements	(d) Both (a) and (p)	
		a a sure five of the following:					[14]	
	Q.2		Attempt any five of the following: 1. Find coordinates of vertex of the parabola y = 2x² + 3x + 11.					
		1.	$\frac{1}{2}$					
		2.						
100	88 1	3.	Evaluate: lim x→3	$\frac{x^3-27}{x^2-9}$.				
		4.	4. Find $\frac{dy}{dx}$ for $y = e^{2x}$ using chain rule.					
ă		5	Find ∂ Z if Z	= 2 sin x cos y.				

6. Identify order & degree of the differential equation:
$$\left(\frac{d^3y}{dx^3}\right)^3 + 2\left(\frac{dy}{dx}\right)^3 - 5 = 0$$
.

7. Evaluate AB if it exists for
$$A = \begin{pmatrix} -2 & 2 \\ -1 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 4 & -1 \\ 1 & 4 \end{pmatrix}$.

- 8. Define: Row Echelon form of a matrix.
- 9. Give rule of integration by parts and explain LIATE criterion.

B. (i) Find domain and range of the function
$$f(x) = \frac{x-1}{5x}$$
. [6]

(ii) Give coordinates of vertex of parabola defined by $f(x) = 2x^2 + 5x - 11$.

OR

B. (i) Simplify:
$$\log(\log x^2) - \log(\log x)$$
. [6]

(ii) Prove that, $\sin\theta(\cos ec\theta + \sin\theta \sec^2\theta) = \sec^2\theta$.

Q.4 A. Evaluate: (i)
$$\lim_{x \to \infty} \frac{4x^3 - 7x^2 + 5x - 1}{8x^3 - 7x^2 + 3x - 1}$$
 (ii) $\lim_{x \to 0} \frac{a^x - b^x}{x}$ [6]

B. (i) Find
$$\frac{dy}{dx}$$
 for $y = \frac{\sin x}{2x+1}$. [6]

(ii) Find out local minimum and local maximum values, if they exists, for the function of several variable: $f(x,y) = x e^y - 2y + \frac{1}{2}x^2 - 3x$.

OR

B. (i) Find
$$\frac{\partial^2 z}{\partial x \partial y}$$
 for $z = x^2 + y^2$. [6]

(ii) Find out local minimum and local maximum values, if they exists, for the function of single variable: $f(x) = x^3 + 2x^2 - 4x - 8$.

Q.5 A. Evaluate: (i)
$$\int \frac{(x+1)}{(x-1)(x+2)} dx$$
 (ii) $\int (\log x)^2 dx$. [6]

(i)
$$\frac{dy}{dx} = ye^x$$
 (ii) $(1+x^2) dy = xy dx$.

B. (i) Evaluate: $\int \sin(2x+1)dx$

[6]

- (ii) Solve the differential equation: $e^{x+y}dx = dy$
- Q.6 A. (i) Find the *inverse* of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, if it exists.

[6]

- (ii) Evaluate rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 10 \end{bmatrix}$
- B. Find the eigenvalues and the corresponding eigenvectors of the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.

[6]

[6]

OR

B. Find the eigenvalues and the corresponding eigenvectors of the matrix $\begin{bmatrix} 3 & 5 \\ -2 & -4 \end{bmatrix}$.
