(9/A10)
No. of Printed Pages: 02

SARDAR PATEL UNIVERSITY

M. Sc. Integrated Biotechnology (IGBT) $1^{\text {st }}$ Semester

Theory Exam - April 2015
PS01CIGB06 - Biomathematics
$1^{\text {st }}$ May 2015 (Friday), 10:30 am to 1:30 pm
Maximum Marks: 70

Note: 1) All the Questions are compulsory.

2) Figures on the right indicate marks.

Q. 1 Choose the correct option.

(1) If a set A has n elements, then the total number of subsets of A is
(a) 2^{n}
(b) n
(c) n^{2}
(d) $2 n$
(2) If $f(x)$ represents parabola opening downwards, $f(x)$ can be \qquad
(a) $-2 x^{2}+9$
(b) $2 x^{2}+9$
(c) $-2 x$
(d) 5
(3) Equation of a linear function with slope (-2) a y-intercept 5 is
(a) $y=5 x+(-2)$
(b) $y=(-2) x+5$
(c) $y=(-2)$
(d) $x=(-2) y+5$
(4) $\frac{d}{d x}(\log x)=$.
(a) $\frac{1}{x^{2}}$
(b) $\frac{1}{x}$
(c) $\frac{1}{\log x}$
(d) e^{x}
(5) $\int \sin x d x=$ \qquad
(a) $\cos x+C$
(b) $-\cos x+C$
(c) $\sin x+C$
(d) $-\sin x+C$
(6) The integration is also known as. \qquad
(a) summation
(b) antiderivative
(c) combination
(d) none of these
(7) If $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ then A is.
(a) Identity matrix
(b) Diagonal matrix
(c) Scalar matrix
(d) None of these
(8) If A is skew symmetric matrix then $A^{T}=$ \qquad
(a) -A
(b) A
(c) A^{-1}
(d) Non of these
Q.2. Attempt any Seven of the following:
(1) Define set and If $A=\{1,2,4,5,6\}$ and $B=\{2,3,4,5,6\}$ find the intersection of set A and set B
(2) Find slope and y-intercept of $3 x+5 y=15$
(3) Find domain and range of $f(x)=\sqrt{x-4}$
(4) Calculate $\lim _{x \rightarrow 3}\left(x^{2}+2 x\right)$.
(5) Find $\mathrm{d} y / \mathrm{d} x$ when $y=\cos 3 x$.
(6) Evaluate $\int \sin t^{6}$ cost $d t$.
(7) Calculate $\partial z / \partial x$, when $z=y \ln x$.
(8) Define with example: Square matrix, Colum matrix.
(9) If $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & -2 & 4\end{array}\right]$ then find the matrix $2 A$.
Q. 3 (A) If $f(x)=3 x^{2}-7 x+2$ then find $f(a), f(a+h), f(a+h)-f(a)$
(B) (i) Find the vertex of parabola whose equation $y=\left(-2 x^{2}+12 x\right)$
(ii) Find the equation of a circle with its centre at $(2,-3)$ and its radius equal to 5 .

OR
(B) Prove that $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$.
Q. 4 (A) If $y=\sqrt{t+1}$, find $d y / d t$.
(B) Find the derivative of y, when $y=\left(x^{2}+5 x+1\right)\left(2-x^{2}\right)^{4}$.

OR

(B) Evaluate $\lim _{x \rightarrow \infty} \frac{\sqrt{1+x}-1}{x}$.
Q. 5 (A) Find integral of $\left(x-\frac{3}{x}\right)^{2}$.
(B) Evaluate $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x, a>0$

OR

(B) Calculate $\partial^{2} z / \partial y^{2}, \partial^{2} z / \partial x \partial y$ when $z=x^{3} y^{4}$.
Q. 6
(A) If $\mathrm{G}=\left[\begin{array}{rr}1 & -1 \\ 0 & 2\end{array}\right], \mathrm{H}=\left[\begin{array}{cc}-1 & 0 \\ 2 & 1\end{array}\right]$ and $\mathrm{I}=\left[\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right]$, then prove that $\mathrm{G}(\mathrm{H}+\mathrm{I})=$
$\mathrm{GH}+\mathrm{GI}$.
(B) If $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ -3 & 2 & 4 \\ 0 & 3 & -5\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 1 \\ 4 & -2 \\ 2 & -3\end{array}\right]$, then find $A B$. Is $B A$ defined? Why?

OR

(B) Find eigen value and eigen vectors of $\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$.

