No. of Printed Pages: 02

SARDAR PATEL UNIVERSITY

M. Sc. Integrated Biotechnology Examination, 5th Semester

Monday, 17-10-2016 2:00 pm to 5:00 pm PS05CIGB01: Enzymology

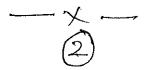
Total Marks: 70

\cap 1	Answer the following	Multiple Chaice	Onactions Allara	somnuleory
\ J- !	Auswei the lunuwing	AND THE CHOICE	Questions, An are o	วันเทมินาอยา ร
Α.		,	•	1 /

[08]

- 1. What term is used for a non-protein organic molecule that is required by some enzymes in order to catalyse a reaction on a substrate?
 - a) Cofactor, b) Co-enzyme c) Modulator d) Prosthetic group
- 2. Induced fit hypothesis was proposed by
 - a) Pasteur b) Fischer c) Koshland d) Pauling
- 3. In isoelectric focusing, gradient is created.
 - a) Calcium chloride b) pH c) Sephadex d) All of the above.
- 4. Which Technique involves separation of an enzyme based on its charge?
 - a) Affinity chromatography
- b) Isoelectric focusing
- c) Immunoadsorption
- d) Gas chromatography
- 5. Primary steps in protein purification includes
 - a) Homogenization b) Differential centrifugation c) Solubilization d) All of these
- 6. Which of the following statements about Michaelis-Menten kinetics is correct?
 - a) K_m, the Michaelis constant, is defined as the concentration of substrate required for the reaction to reach maximum velocity.
 - b) Km, the Michaelis constant, is defined as the dissociation constant of the ES complex
 - c) Km, the Michaelis constant, is expressed in terms of the reaction velocity.
 - d) Km, the Michaelis constant, is a measure of the affinity the enzyme has for its substrate.
- 7. _____ occurs when the inhibitory chemical which does not have to resemble the substrate binds to the enzyme other than at the active site.
 - a) Non-competitive inhibition b) Competitive inhibition c) Uncatalysed reaction
 - b) All of them
- 1 8. The most commonly employed cross-linked polymer is
 - a) Cellulose b) Collagen c) Polyacrylamide gel d) Cation exchange resin

Q-2 Answer the following questions. (ANY SEVEN)


[14]

- (1) List the six classes of enzyme.
- (2) What are activators and inhibitors?
- (3) Name types of gels used during gel filtration.
- (4) By which methods the rigid cell wall can be lysed.
- (5) What is Km? Explain its relationship with Vmax.
- (6) Explain principle of ion exchange chromatography.
- (7) Discuss 'feedback inhibition' with examples.
- (8) Give significance of immobilization of enzymes.
- (9) Explain isozymes of LDH.

P.T.O

Q-3	} (<i>F</i>	Explain: Transition state stabilization hypothesis.	10.63
Q-3) What is active site? List the important features of active site.	[06]
		bist the important features of active site.	[06]
	(B	OR 1) Explain Induced fit model of enzyme substrate interaction. 2) Briefly describe three point interactions of enzyme and substrate.	[06]
Q-4	(A	List various methods used for the separation of protein based on polarity. Explain any two in detail.	[06]
Q-4	(B)	Describe the process of homogenization for mammalian, plant, fungal and bacterial cells	[06]
	(B)	OR Explain the steps involved in the separation of enzyme.	[06]
Q-5	(A)	Give derivations for Michaelis-Menten equation and MM plot for enzyme catalyzed reactions.	[06]
Q-5	(B)	What is reversible and irreversible inhibition? Explain competitive, uncompetitive and non-competitive reaction.	[06]
	(B)	OR Derive the Line weaver-Burk equation for uncompetitive enzyme inhibition.	[06]
Q-6	(A)	Describe entrapment method of immobilization with its advantages.	
Q-6	(B)	Write a short note on Isoenzymes. Discuss any two examples in detail.	[06] [06]
	(B)	OR Differentiate between enzymes and chemical catalysts.	[06]

·

