[197/198/A-30]

No. of printed pages: 04

SARDAR PATEL UNIVERSITY

M.Sc(Statistics) Fourth Semester and Certificate

Course in Financial Statistics Examinations

Thursday, March 28, 2019

2:00 p.m to 5:00 p.m

Subject: PS04ESTA92/ PS04ESTA22: Actuarial Statistics

Note: Figure to the right indicate full marks to

Total Marks 70

the questions.

1. Choose the correct answer(s) and write in your answer book.

8

- (i) The probability that the house will not be damaged by fire in a period of one year is p and the probability density function of positive loss is exponential with mean θ units. Then expected loss is
 - (a) θ units

(b) $p(1-p)\theta$ units

(c) pθ units

- (d) $(1-p)\theta$ units
- Utility function is a function which measures (ii)
 - (a) The value of utility attached to wealth
- (b) Utility of property

(c) Utility of time

- (d) None of (a) to (c)
- (iii) Which of the following is **not** a survival function for $x \ge 0$
 - (a) $S(x) = \frac{x}{\theta}$, $0 < x < \theta$.
- (b) $S(x) = \exp(-x^2), x > 0.$
- (c) $S(x) = \frac{1}{(1+x)^2}, x > 0.$
- (d) $S(x) = \exp(-x), x > 0$.
- (iv) If $S_N = X_1 + X_2 + ... + X_N$ is random sum of i.i.d random variables, distributed like X, which are independent of N then variance of S_N is
 - (a)Var((X)E(N)
- $(b)E(X^2)Var(N)$
- (c) $Var((X)E(N)+E(X^2)Var(N)$ (d) None of these

- **(v)** $t|uq_x$ stands for
 - (a) Probability that (x) will die (b)P[$t < T(x) \le t+u$] between ages x+t and x+t+u
 - (c) $P[x+t< X \le x+t+u|X>x]$
- (d) all (a) to (c)
- (vi) If curtate random Variable K(x)=8 then residual life random variable T(x) takes values:
 - $(a)8 < T(x) \le 9$

(b) $7 \le T(x) \le 8$

(c) $8 \le T(x) < 9$

- (d)None of these
- (vii) Suppose life length random variable is modeled by uniform distribution over the

interval (0,0). Which following relations is correct?

(a)
$$d_x = l_x - l_{x+1}$$

$$(\mathbf{b})d_{\mathbf{x}} = \frac{l_0}{\omega}$$

(c) both (a) and (b)

(d) None of (a) to (c)

(viii) In annuities

- (a) payments occur at the end of (b) payments occur in regular term intervals
- (c) both (a) and (b)

(d) none of (a) to (c)

2 Answer any seven of the following.

14

- (i) Explain with examples role of risks in insurance.
- (ii) What do you mean by relative security loading?
- (iii) What do you understand by utility function? Give desirable properties for a utility function.
- (iv) Suppose a survival model is defined by the following values of p_x.

Х	0	1	2	3	4
p _x	0.9	0.8	0.6	0.3	0

What are corresponding values of S(x)?

(v) Under the Bulducci assumption show that

$$P(T(x) > t) = \frac{1 - q_x}{1 - (1 - t)q_x}$$

- (vi) In the usual notation obtain the expression for $_{1.5}p_{30.5}$ in terms of l_x
- (vii) Show that $L_x = \int_x^{x+1} l_t dt$
- (viii) If $l_{x+t} = a/(3+t)$, $0 \le t \le 1$, $l_{x+1/2} = 800$, evaluate $l_{x+3/4}$, without finding a.
- (ix) Obtain the expression for $S_{\overline{n}|}$.

3 (a) Suppose survival model is defined for certain kind of insects, expected to live maximum six weeks, by the following values of p_x .

$$x:$$
 0 1 2 3 4 5 6 $p_x:$ 0.9 0.8 0.7 0.5 0.3 0.1 0

Using radix $l_0 = 10000$ construct life table.

(b) From the life table constructed in (a) answer the following

- 6
- (i) If l_0 insects born every week, what is the total population?
- (ii) What is proportion of insects aged 3 weeks, expected live 5 weeks?
- (iii) What is the expected number of insects living between ages 1 and 4 weeks?

OR

(b) Write a detailed note on insurance business in India

6

6

6

- 4 (a) Describe De Moivre' law, Gompertz Law and Makeham's Law and Weibull law by giving their force of mortality and obtaining survival functions.
 - (b) Describe n-Year Pure Endowment Insurance and obtain the expression for mean and variance of the present value random variable Z in actuarial notation.

OR

- (b) If $l_x = 1000\sqrt{(100 x)}$, $0 \le x \le 100$, calculate exact value of $\mu_{36 + \frac{1}{4}}$. Also find it under the assumption of uniformity of deaths in a unit interval. Compare the two values.
- 5 (a) Describe n year term life insurance scheme with the help of international 6 notations for actuaries. Obtain expressions for net single premium and variance of Z_T, the present value at policy issue, of the benefit payment.
 - (b) The probability density function of the future lifetime T for (x) is assumed to

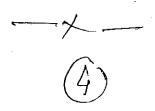
be
$$g(t) = \begin{cases} \frac{1}{80} & \text{if } 0 < t < 80, \\ 0 & \text{otherwise.} \end{cases}$$

At a force of interest δ , calculate for Z, the present-value random variable for a whole life insurance of unit amount issued to (x), (i) the net single (ii)the variance (c) the 90^{th} percentile.

OR

- (b) Consider a 5-year deferred whole life insurance payable at the moment of death of (x). The individual is subject to a constant force of mortality μ =0.04. For the present value random variable X of the benefit payment at δ =0.10 (i) calculate the expectation and the variance, (ii) find the distribution function and (iii) calculate the median.
- 6 (a) Describe Annuities Certain Immediate. Find the present value and 6

accumulated value of 10 year annuity immediate of ₹ 1000 per annum if the effective rate of interest is 5% for the first two years , 6% for the next three years and 7% for rest five years.


(b) Explain in detail mthly whole life annuity.

6

OR.

(b) Explain the concept of reserves as used in the insurance business. For n-year endowment insurance issued to (d) on a fully continuous basis, write down the expression for prospective loss random variable. Find its expectation and variance. Obtain the formula for reserve in this setup.

DUNCOUNC

