50

Marks: 70

SARDAR PATEL UNIVERSITY

M.Sc. (Electronics & Communication) (Semester-II) Examination Day & Date: Saturday, 25-04-2015 Time: 2:30 p.m. to 5:30 p.m. Subject: Digital Electronics Paper No. PS02CELC03

Instructions:

--Figures to the right indicate marks.

Q-1	Choose the co	rrect answer.			[8]	
1.	How many binary numbers are created with 8-bits?					
	a)512	b) 256	c) 128	d) 64		
2.	In MSI the number of gate circuit per chip is					
	a)<6	b)<12	c)<100	d)<1000		
3.	An n variable K-map have					
	a) 2^n cells	b) n^2 cells	c) n^n cells	d) n^{2n} cells		
4.	An Eight square eliminate variable.					
	a)3	b)4	c)5	d)6		
5.	A is a logic circuit that compares the magnitude of 2-bit binary number.a)1-bit magnitude comparatorb)2-bit magnitude comparator					
	c)3-bit magnit	ude comparator	d)4-bit magnit	ude comparator		
6.	A Johnson counter has a initial state Q1=1, Q2=0, Q3=0, Q4=0, What will be the state of O1, O2, O3, O4 output of the counter after the 7 th clock pulses.					
	a) 1110	b) 1100	c) 0000	d) 0001	2	
7.	In RS flip-flop	$R=S=1$, the state Q_{n+1}	-1 of the flip flop after	er the clock pulse will be		
	a) reset	b) set	c) indetermina	te d) no change		
8.	An 8-bit synchronous counter uses flip-flop with propagation delay time of 100 ns each. The maximum possibilities time required for change of state will be					
	a)100 ns	b)75ns	c)50ns	d)25ns		
Q-2	Answer in sho	ort. (Any SEVEN)			[14]	
1.	How BCD addition is performed?					
2.	What is meant by weighted and Non-weighted codes?					
3.	State De-Morgan first and second theorem.					
4.	What is K-map? What are the advantages and disadvantages of it's?					
5.	Which gates are called universal building blocks? Why?					
6.	Explain 1-bit magnitude comparator.					
7.	Explain RS flip-flop.					
8.	What is shift register? What is the basic difference between shift register and counter?					

9. Give the difference between Serial and Parallel counter.

Q-3 (a)	Perform the following. (I) Convert (105.15) ₁₀ to binary. (II) Convert (4057.06) ₈ to decimal.	(6)			
	(III) Convert $(110101.101010)_2$ to octal.				
(b)	With necessary circuit diagram explain Johnson counter.				
(b)	With necessary circuit diagram, truth table and waveforms explain MOD-8 synchronous counter.				
Q-4 (a)	Reduce the expression $F=\sum M (0, 2, 3, 4, 5, 6)$ by SOP and implement in to NAND logic.				
(b)	Perform the following. (I) Subtract 14 from 46 using 8-bit 2's complement method. (II) Perform the XS-3 addition of 37and 28. (III) Find the 10's Complement of the 4069.	(6)			
(b)	Reduce the expression $F=\sum m (0,1,2,5,8,9,10)$ by SOP. Also count how many inputs required by the converting in to simple logic circuit.				
Q-5 (a)	Reduce the following Boolean expression: $\overline{\overline{AB} + ABC} + A(B + \overline{AB})$	(6)			
(b)	 Perform the following. (I) Subtract 15 from 38 using BCD subtraction method. (II) Subtract 27 from 57 using XS-3 code. (III) Convert gray 111001 to binary. 	(6)			
(b)	Explain 2-bit magnitude comparator in detail with necessary diagram.	(6)			
Q- 6 (a)	Explain edge triggered D flip-flop in detail.				
(b)	What is PLA? Show how PLA circuit can be programmed to implement the 3-bit binary to Gray converter.				
	OR				
(b)	Give detail account of Master slave JK flip-flop.	(6)			

-χ

÷.