[24]

Sardar Patel University

M.Sc (Electronics & Communication) (Semester I) (CBCS) EXAMINATION - 2016 Wednesday, 26th October 2016

10:00 AM to 01:00 PM PS01CELC03 Signal and System

Note: The figures to the right indicate maximum marks.

Total mark: 70

	2	•	•	•		
Q-1		Multiple Choice Question		[08]		
	1)	What is the fundamental period of the period	odic s	ignal $x(n) = \cos(0.002\pi n)$?		
		(a) 1000	(b)			
		(c) 0.001	(d)	0.01		
	2)	If signal takes on all possible values on a f signal.	inițe o	or an infinite range, it is said to be		
		(a) Continuous value	(b)	Multidimensional		
		(c) Discrete value	(d)	none		
٠.	3).	A system which illustrate the multiplication sequences is called as	n of tv	wo signal sequences to form another		
		(a) Signal multiplier	(b)	adder .		
		(c) constant multiplier	(d)	Unit delay element		
	4)	Z-Transform of unit impulse signal is				
	,	(a) 1		$\frac{1}{1-az^{-1}}$		
		(c) $\frac{z^{-1}}{1 - az^{-1}}$	(d)	$\frac{1}{1 - az^{-1}}$ $\frac{az^{-1}}{1 - az^{-1}}$		
	5)	The average power of the unit step signal is .				
	. *	(a) Infinite	(b)	0.5		
		(c) Finite	(d)	1		
	6)	Twiddle factor for N-point DFT W _N =		:		
	•	(a) $e^{j2\pi/N}$	(b)	$e^{-j2\pi/N}$		
		(c) $e^{-j2\pi kn/N}$	(d)	$e^{j2\pi kn/N}$		
	7)	Input signal x(n) is transformed by the sys	tem in	to a signal y(n) is called as		
		(a) Continuous time signal	(b)	Discrete time signal		
	į	(c) time limited signal	(d)	none		
	8)	System is known as memory	less sy	estem.		
		(a) Static	(b)	Dynamic		
		(c) Roth A and B		None of above		

Q-2 Answer the following short		Answer the following short questions [Any Seven]	[14]
	(1) Write the properties of Continuous time sinusoidal signal.		[14]
	(2)	Explain the basic block diagram of digital signal processing.	
	(3)	Explain periodic signal and aperiodic signal.	
÷	(4)	4) Explain energy signal and power signal.	
** *	 (5) Explain multi-channel signal and multi dimension signal. (6) Explain symmetric and antisymmetric signals. (7) Explain the following properties of DFT. (i)Circular time shift (ii) Circular frequency shift (8) Determine the z – transform and ROC of the finite duration sequence 		
	` '	()	
		$x(n) = \left\{2, 3, 5, 7, 9\right\}$	
	(9)	Write the twiddle factor matrix for 8- point DFT.	
Q-3	(a)	State the sampling theorem and explain the sampling of an analog signal.	
0.2			
Q-3	(b)	Explain the classification of signal in detail.	1061
			[06]
Q-3	(b)	OR Circo the second of C C	
Q-3	(b)	Give the concept of frequency in continuous time and discrete time signal in detail.	[06]
Q-4	(a)	Explain in detail interconnection of Discrete time systems.	[0 <i>C</i>]
		The state of the systems.	[06]
Q-4	(b)	Explain the classification of the discrete time system	[06]
Q-4	(b)	(h) Determine the convolution of the following	
	the following sequences.		50.63
		$x(n) = \left\{1, 2, 1, -1\right\} h(n) = \left\{1, 2, 3, 1\right\}$	[06]
Q.5	(a)	Derive the power density spectrum for periodic continuous signal.	
•		remainded spectrum for periodic continuous signal.	
Q.5	(b) Determine the z-transform and ROC.		
		(i) $x(n) = a^n (\cos \omega_0 n) u(n)$ (ii) $x(n) = \left(\frac{1}{2}\right)^n u(n) + \left(\frac{1}{3}\right)^n u(n)$	[06]
		$u(n) = u(\cos \omega_0 n) u(n)$ (ii) $u(n) = (2) u(n) + (3) u(n)$	
	•	OP	
Q.5	(b)	Enlist different properties of the z transform and explain any three of them.	F0.61
-	` /	Proportion of the 2 transform and explain any timee of them.	[06]
Q.6	(a)	Derive the energy density spectrum for periodic continuous signal.	race.
Q.6	(b)	Explain Fourier series for discrete time periodic signals in detail.	[06]
-	OR		[06]
Q.6 (b) Write the circular shift property		Write the circular shift property of DFT and obtain the circular convolution of	
		()	
	7	the sequences $x_1(n) = \left\{ 2, 1, 2, 1 \right\}$ and $x_2(n) = \left\{ 1, 2, 3, 4 \right\}$	[06]
	-	Page 2	13
		i uge 2	
